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Abstract—Though producing an appropriate prosodic
realisation of text is a one-to-many problem, modern speech
generation often focuses on identifying the “best” or ‘“most
likely” output, overlooking acceptable variation across real-
isations. How listeners perceive such variation-and whether
models capture it—is unaccounted for in current evaluation
paradigms. In this study, we present exploratory analyses of
whether self-supervised models encode acceptable prosodic
variation. Using a new dataset of relative acceptability
ratings across carefully controlled, high-quality synthetic
utterances, we show that SSL representations contain
information predictive of such judgments. By introducing
a novel method for deriving probability-based uncertainty
from autoregressive speech models, we examine whether
this information is available in an unsupervised setting,
highlighting the complexity of prosodic perception and the
value of more human-centric evaluation paradigms.

Index Terms—self-supervised
speech synthesis evaluation

speech representation,

I. INTRODUCTION

SYCHOLINGUISTIC research shows that language
users make gradient judgements about how well an
utterance matches their expectations []], [2]. This sensi-
tivity allows for variation in how utterances are realised.
For example, prosodic variation—shifts in pitch, rhythm,
and intensity—can yield distinct realisations of the same
utterance that are equally acceptable in a given discourse
context or for conveying the same intent [3], [4]], [S].
Yet most paradigms for evaluating language generation
ignore this permissible variability. As synthetic speech
nears human-like quality, understanding the prosodic
variation is increasingly important to improve generation
methods and models of human language comprehension.
Recent studies of text-to-speech (TTS) evaluation
recognise that widely used subjective paradigms like
Mean Opinion Score (MOS) or Multiple Stimuli with
Hidden Reference and Anchor (MUSHRA)—which aim
to capture fidelity or fluency—cannot assess whether
a particular prosodic variant is more, less, or equally
acceptable to another [6]], [7], [8]. A new subjective
task of relative acceptability judgements, where listeners
compare multiple prosodic candidates of the same text,

* for co-authorship.

instead places different prosodic realisations along a
continuum of acceptability. Their relative positions allow
us to charaterize the wider distribution of permissible
prosodic variation and its boundaries [9].

In this paper, we present an exploratory analysis of
the dataset of relative acceptability judgements collected
by [9]. The stimuli have been carefully synthesised
to control for confounding factors of lexical content,
speaker, and generation quality, thus isolating the effect
of prosodic variation on percieved acceptability. Mod-
els trained with self-supervised learning (SSL) such as
wav2vec and wavLM encode complex patterns in their
training data spanning phonetic details, speaker traits,
and aspects of prosodic information [10], [IL1], [12].
They have also been shown to be strongly predictive of
MOS preference scores; however, it is unclear whether
prosodic acceptability contributes to this performance
[13], [14]. Do these models reflect the permissible vari-
ation across prosodic realisation that human listeners
exhibit when the quality of underlying samples is high
and the main component of variation is prosody?

To answer this question, we conduct two exploratory
analyses: in the first, we demonstrate that SSL-derived
features are useful for predicting relative acceptability
scores, suggesting that SSL models encode aspects of
permissible prosodic variation; in the second, we ask
whether this information can be accessed in a zero-
shot manner through SSL probability assignments. For
this, we propose a new method for extracting probabil-
ities from autoregressive SSL models to score speech
samples. Though such scores correlate well with hu-
man MOS preference judgements, their relationship to
relative-acceptability judgements is weaker and more
complex. Our findings have implications for TTS eval-
uation, and contribute to the growing body of research
investigating whether SSL models reflect human speech
perception by offering a new method to explore the
statistical patterns encoded through SSL training.

II. BACKGROUND
A. Evaluating human perception of prosody

A critical element in determining whether listeners
perceive speech as human-like is the appropriateness of



its prosodic realisation—in other words, does it match
their expectations? Perceptual studies have demonstrated
that listeners are tolerant of prosodic variation over fixed
lexical content. For example, multiple realisations can be
judged as achieving the same communicative function
or as acceptable in a given discourse context [[15], [2],
[4] and listeners can imagine contexts in which diverse
prosodic renditions are valid [16]]. This tolerance is mir-
rored in speech production and re-enactment paradigms
where numerous prosodic interpretations can be licensed
by the same underlying sentence [17], [S].

Though its role has been well-established, acceptable
variation in prosodic realisation is not well-accounted for
in standard subjective evaluations of synthetic speech.
Perhaps the most widely used metric, MOS, reflects
aggregate listener impressions of quality or naturalness.
However, it is sensitive to the sample set [18]], suscep-
tible to range-equalizing bias [19]], and prone to score-
saturation for high-quality samples [8]]. As such, it is too
coarse to investigate nuanced prosodic differences [8]],
[7]. Moreover, it remains unclear whether listeners pri-
oritize naturalness, intelligibility, or audio quality in their
ratings [8]], leading some papers to claim that synthetic
samples are “more natural” than human speech [20].
MUSHRA testing uses side-by-side comparisons and
fine-grained scoring, making it more sensitive than MOS;
however, this paradigm relies on judging proximity to
reference samples, meaning it cannot capture permissi-
ble variability when multiple prosodic realisations are
equally felicitous. Other reference-based paradigms like
ABX-testing suffer from the same problem [21], [7].
Relative acceptability judgments, where participants rank
or rate multiple realisations of the utterance without a
reference, can provide novel insights into how accept-
ability is distributed across prosodic variation.

B. Prosodic information in SSL representations

Benchmarks like SUPERB-prosody [L1] demonstrate
that SSL representations can be used for tasks that in-
volve prosody such as prominence, emotion, and sarcasm
detection, while [22] shows that SSL. models encode
abstract suprasegmental categories (e.g., tone, stress) that
don’t directly map to surface acoustics like FO.

Recent work has begun to explore whether these rep-
resentations align with more explicit human judgments
of prosody. For example, [23], [24] report moderate
correlations between SSL embeddings and listener rat-
ings for prosodic and pragmatic similarity across utter-
ances with shared lexical content, while the ProsAudit
benchmark provides direct comparisons between human
and model judgements of structural prosody [25]. These
studies primarily focus on whether SSL. models reflect
human judgments of perceived similarity. However, the
question of whether SSLs reflects human perception of

acceptability across prosodic variation (i.e., reference-
free evaluation) has yet to be addressed.

C. Modeling listener judgments with SSL models

Recent work has shown that SSL-based models are
effective at predicting MOS scores for synthetic speech
samples, with lightweight prediction architectures us-
ing SSL representations as features performing well in
benchmarks like the VoiceMOS Challenge [14], [26].
This effectiveness extends to zero-shot settings where the
prediction task has been framed as out-of-distribution de-
tection, showing correlation between uncertainty scores
of pre-trained SSL models and MOS scores [27], [28]].

However, predicted MOS scores inherit the noise and
biases of the human MOS labels discussed in Sec-
tion As such, it remains unclear what aspects
of human judgements are being leveraged by MOS
prediction models or encoded by SSL models. Targeted
evaluations of how subtle characteristics of speech affect
human judgements are required to assess which aspects
of speech are represented in modern speech encodings.

D. Estimating uncertainty from SSL models

The probabilities assigned to upcoming units of text by
self-supervised language models are used extensively in
NLP. They form the basis of perplexity—a standard eval-
uation metric for text-model quality [29]—and numer-
ous studies show a strong relationship between model-
estimates of word-level surprisal and human language
comprehension behaviours like reading times [30]], [31],
[32]. However, extracting probability assignments from
models of speech is more complicated. For example,
autoregressive SSL models of text are trained to predict
upcoming units from a token vocabulary that maps
directly to their textual input, such as wordpieces of BPE
units [33]], [34]; speech cannot be discretised as easily.

Only a handful of works have explicitly attempted to
extract probabilities from SSL speech models, employing
different methods and models. [28] extract probabilities
from the logits of frame-level prediction in wav2vec
models as an unsupervised proxy for MOS prediction,
showing that poor quality samples can be detected as
anomalies from high model uncertainty. [27] take an
approach closer to text-base probability estimation: using
SSL models like HuBERT to encode speech into a
sequence of tokens, they train a language model on
such token sequences and can then compute generation
probabilities under the model. They find correlations
between MOS scores and such probabilities across model
architectures and encoders. This approach has also been
applied to probe whether SSL models encode phonetic,
lexical, syntactic, and prosodic information [35], [25].
Given that the underlying token sequences stem from bi-
directional contextual representations, we note that these



are pseudo-probabilities [36]. It is unclear what aspects
of the speech signal are encoded through the different
extraction methods. In this work, we propose a novel
method for obtaining true probability estimates to better
understand what each method may encode.

III. DATASETS

We use two datasets of preference judgements. Both
reflect listener perceptual judgments—VoiceMOS’22 in-
volves absolute quality ratings across diverse systems
while PrefRank provides relative preference rankings
of prosodic variants with comparable quality from a
single TTS model. As such, they provide complementary
insights for modelling human speech preferences.

PrefRank. In a study of TTS evaluation for stochastic
generative models, [9]] collected listener judgments of
synthetic utterances produced by by a SOTA generative
model, ParlerTTS [37]. Listeners ranked four different
generations of the same underlying lexical content, in-
cluding utterances from both read and conversational
material (Ny.,+ = 120). The data collection pipeline for
PrefRank provided a high degree of control over speaker
identity, speech quality, and intelligibility, ensuring that
listener judgements were primarily driven by variation in
prosodic realisation. Listener rankings were aggregated
using a probabilistic Bradley—Terry—Luce (BTL) model,
which estimates a relative score 6; for each rendition
based on its ranking outcomes [38]]. The resulting BT
scores reflect the relative acceptability of prosodic real-
izations across renditions.

VoiceMOS’22. Initiatives like the VoiceMOS Chal-
lenge [26] aim to advance the automatic prediction of
listener preferences by benchmarking models against
human ratings. We use the VoiceMOS 2022 challenge
as a point of comparison for the PrefRank dataset.
VoiceMOS’22 comprises crowdsourced MOS evaluations
of synthetic speech samples from systems submitted to
the Blizzard Challenge over a decade [39], [40].

IV. EXPERIMENT A: DO SSLS ENCODE ACCEPTABLE
VARIATION ACROSS PROSODIC REALISATIONS?

We begin by examining whether SSL representations
are predictive of the perceptual acceptability of prosodic
variations in synthetic speech: if a simple supervised
model can successfully predict humans’ relative rank-
ings, it suggests that SSL models indeed encode cues
relevant to perceived prosodic acceptability. We then
test whether popular MOS predictors are useful for
predicting acceptability judgments.

A. Experimental Set-up

Predicting Relative Acceptability. We implement a list-
wise ranking model (ListNet [41]) to predicts scores

{01,04,05,04} over sets of renditions {ri,ro,7r3,74}
rather than scoring renditions individually. This approach
models the probability that each rendition is ranked
highest. It converts both the true normalized BT scores
(0;) and the model’s predicted (s;) into probability
distributions over the set using a softmax function and
learns to minimize the cross-entropy between them.

Following MOS-SSL-Net [14], we use a lightweight
predictor architecture to probe the value of SSL features
more directly. Given the relatively small size of Pre-
JfRank, we perform 5-fold cross-validation with an 80/20
split for training and testing in each fold. All models
are trained for 10 epochs, and performance metrics are
reported as the average across all five folds.

We compute correlation metrics per stimulus set be-
tween the predicted and ground truth BT scores; results
are averaged across all stimulus sets in the test set
and across all K-folds. We report widely used rank
correlation metrics: Spearman’s Rank Correlation Co-
efficient (SRCC), Kendall’s Tau (7), and Top-1 Ac-
curacy. Additionally, to account for variance/spread in
BT scores, we also report Weighted Kendall’s Tau (7,,)
which penalizes misrankings more heavily for samples
with higher human acceptability ratings.

SSL Representations. We test several speech founda-
tion models, which are commonly used to benchmark
various downstream speech processing tasks: HuBERT
[42], WavLM [43]], vg-wav2vec [44], wav2vec2.0-960H
[45]land Wav2vec2.0-SWBD . Before feature extraction,
all audio samples were downsampled to 16 kHz. For each
utterance, we extract feature vectors from the last hidden
layer of the pre-trained SSL model with dimensions
D x L, where D is the hidden layer dimension (e.g.,
1024 for all models apart from vq-wav2vec) and L is the
sequence length. Following previous work of deriving
SSL features for previous downstream speech tasks [[11]],
[24], we applied average-pooling across the time dimen-
sion to obtain a fixed-size utterance-level representation.
Though mean pooling across the time axis is a relatively
crude operation, such representations have been shown to
maintain prosodic information. As an acoustic baseline,
we used the ComParE-EGEMAPS acoustic features, a
comprehensive set of 88 low-level descriptors related to
pitch, temporal information, energy, and spectral charac-
teristics extracted via the openSMILE toolkit [46]. We
do not expect these features to reflect the complex rela-
tionship between prosodic variation and acceptability.

MOS Prediction Models. Additionally, we investigate
whether off-the-shelf MOS prediction models can gen-
eralize to PrefRank acceptability judgments. For each
stimulus set, we predict MOS scores (s;) for each rendi-
tion using various automatic MOS models implemented
in [47]. We convert scores to rankings and compute their



Model Top-1 T Tw SRCC
WAV2VEC 2.0 0.325 0.190 0.189 0.227
WAV2VEC2.0-SWBD  0.500  0.329 0.351 0.376
WAVLM 0.458 0.335 0.344 0.394
HUBERT 0492 0282 0.316 0.313
VQ-WAV2VEC 0492  0.353 0.374 0.400
EGEMAPS 0.292 -0.005 -0.011 -0.006

TABLE I: Listwise model performance of SSL models and
EGEMAPS on predicting relative acceptability in PrefRank.

correlation with ground-truth Bradley-Terry (BT) scores.
Since we do not conduct any fine-tuning, we perform our
evaluation on all stimulus sets in PrefRank.

B. Predictive Power of SSL Representations

The listwise learning presented in Table [I] show that
SSL representations are indeed predictive of relative
acceptability, indicating that these models encode infor-
mation relevant for relative acceptability. We find mod-
erate and comparable correlations across all SSL. models
except wav2vec 2.0 which achieves slightly weaker cor-
relation. This is an encouraging finding, especially con-
sidering our relatively small training dataset and simple
predictor architecture. We observed that the dispersion in
BT scores was subtly reflected in the reported Weighted
Tau 7, values, highlighting the importance of selecting
informative evaluation metrics.

Despite being a less parameterized model than
wav2vec2.0, vg-wav2vec exhibits comparable perfor-
mance to the other SSL models. Future analysis
should consider whether correlation is related to fac-
tors such as model capacity, training data characteris-
tics, or the specific underlying pre-training task (e.g.,
wav2vec2.0’s contrastive loss versus HUBERT’s masked
prediction objective). We also find a difference in perfor-
mance between wav2vec2.0 trained on LibriSpeech and
wav2vec2.0-SWBD trained on conversational Switch-
board data, suggesting that domain differences in the
training data for speech foundation models may influ-
ence the prediction task. As anticipated, the EGEMAPS
acoustic baseline showed only marginal performance
Tw ~= 0. The prosodic variation exhibited in PrefRank
depends on complex prosodic structures that are not
present in low-level acoustic measures alone.

Though SSL representations are strongly predictive
of absolute MOS scores, our findings corroborate the
expectations expressed in [8]] that the high performance
of SSL models on VoiceMOS’22 may be attributed to the
diversity of synthesis systems and quality levels in that
dataset [28], [14]. Using the more controlled PrefRank
stimuli, we confirm their hypothesis that SSL features
are less predictive predictors and may struggle to capture
fine-grained listener preferences.

Model Top-1 Tw SRCC
UTMOS 0.283  0.059 0.087
DNS_OVERALL 0.217 0.005 0.026
PLCMOS 0.158  -0.093 -0.076
SHEETMQA 0.267 0.057 0.061

TABLE II: Correlation between MOS prediction models’
outputs and relative acceptability rankings in PrefRank

C. Performance of MOS Models on Predicting Relative
Acceptability

As shown in Table [lI, MOS-prediction models perform
poorly on the PrefRank dataset. While they effectively
capture absolute quality, these models do not effectively
transfer to the more nuanced relative acceptability judg-
ments in PrefRank. Prior work has demonstrated that
some MOS-prediction models generalise across out-of-
domain datasets [[14], suggesting that poor performance
is not solely a reflection of model limitations. Instead, it
may reflect a deeper misalignment between information
that is useful for predicting the broad quality differences
reflected by MOS and for the fine-grained preferences
reflected in PrefRank. This raises important questions
regarding the limitations of MOS predictors for evalua-
tion, especially of high-quality, prosody-focused speech.

V. EXPERIMENT B: DO PROBABILITY ASSIGNMENTS
FROM SSL MODELS OF SPEECH CORRELATE WITH
PROSODIC ACCEPTABILITY JUDGEMENTS?

The supervised task presented in the preceding section
demonstrates that SSL representations encode informa-
tion relevant to human assessments of prosodic accept-
ability. However, supervised prediction methods don’t
generalise well across domains. As such, we take an un-
supervised approach to investigate how this information
may be encoded. We examine the statistical regularities
that SSL models encode through their probability assign-
ments to speech inputs, and how strongly they correlate
with both MOS judgements and acceptability scores.
We propose a novel method for obtaining probability
estimates and compare the scores derived from this
approach to a previously established method.

A. Extracting probability scores from autoregressive SSL
models of speech.

We extract probability-based utterance scores from vq-
wav2vec, one of the few autoregressive SSL models
of speech that operates over a discrete vocabulary of
units, and compare to pseudo-probability estimates from
more powerful non-autoregressive SSL of interest from
Section[[V] We describe the models and their probability
estimates below.

The vq-wav2vec model consists of a convolutional
acoustic encoder, a quantization module, and a convo-
lutional context network [44]]. It is trained to predict



quantized latent representations, learning both a set of
codebook embeddings and a way to score how well each
code fits a given audio frame. Though its training ob-
jective is contrastive (i.e., distinguishing between latent
representations of input segments), the task of predicting
future latent representations from past context encour-
ages it to learn conditional probability distributions.

We extract frame-level probability assignments from
this model with two methods. The first is our proposed
method—representational uncertainty U,..,. We ex-
tract probabilities from the logits of the learned quan-
tization module for every frame of input speech. Taking
the softmax of these logits reflects a distribution of the
model’s uncertainty over its discrete codebook vocabu-
lary at every time step. The second method, which we
refer to as predictive uncertainty U,,,..q, was proposed
by [28]. Probabilities are obtained by taking a softmax
over the contrastive predictive logits of the vg-wav2vec
context network at every timestep. These logits stem
from the contrastive training loss (i.e., distinguishing
the true future code from sampled distractors). As such,
predictive uncertainty reflects the certainty of the models
prediction within the contrastive learning objective while
representational uncertainty is more analogous to classi-
cal notions of surprisal from text models as it reflects
the model’s uncertainty in representing its input.

Wav2vec2.0 and its extension wavLM are popular
SSL models which involve encoding raw audio into
latent features [45], [43]. Operating over these latent
features, a Transformer-based context network is trained
to predict representations of masked time steps in its
training input [48]]. As such, these models don’t learn to
encode conditional probability directly. We instead ex-
tract frame-level pseudo-probabilities from an additional
head fine-tuned with a CTC loss to predict a distribution
over a token vocabulary at each time step; we apply a
softmax to the logits over this prediction at every frame.

To compute utterance-level scores for each method,
we apply two summarisation operations to the frame-
level probability distributions before mean-pooling
across all frames in each utterance: entropy, and max-
imum. Entropy is a direct quantification of uncertainty
over a distribution, while maximum offers more coarser
description by only providing information about a single
unit prediction. However, it mirrors the method for
extracting surprisal from text models more closely.

B. Experimental Set-up

We follow the audio preprocessing described in Sec-
tion For wav2vec2.0 and wavLM, we use model
checkpoints with fine-tuned CTC heads and for vg-
wav2vec, we use the model detailed in Section [[V-Al

vg-wav2vec wav2vec2.0  wavLM
Score Urep Upred CTC CTC
Entropy -0.422  -0.690 -0.383 -0.434
Max prob  0.374 0.674 0.348 0.421

TABLE III: Spearman p correlation coefficients between SSL
uncertainty scores and MOS ratings from VoiceMOS’22. All
correlations are significant at p< 0.001.

vg-wav2vec wavLM  wav2vec2.0
Domain  Score Urep Upred CTC CTC
Overall ~ Entropy -0.140 -0.061 0.083 0.063
Overall ~ Max 0.068  0.050 -0.062 -0.085
Read Entropy -0.223  -0.144  -0.091 0.007
Read Max 0.135  0.144 0.062 -0.045
Conv. Entropy -0.086  -0.005 0.200 0.099
Conv. Max 0.023  -0.013 -0.144 -0.112
TABLE IV: Spearman p correlations between PrefRank

acceptability scores and SSL model probability score. Corre-
lations are averaged over all, read, and conversational stimuli.
Only italicised elements are significant with p < 0.05; p-values
are obtained through permutation testing.

C. Correlation with MOS judgements.

As expected, Table shows a positive relation-
ship between maximum probability estimates and MOS
scores while entropy is negatively correlated; low frame-
level entropy and high probabilities both indicate high
model certainty. Supervised models trained to predict
MOS from SSL features, such as the baseline from [49]],
obtain p ~ 0.92, demonstrating how much performance
can be improved through supervision.

As we hypothesized, entropy consistently outperforms
maximum probability, confirming that a more detailed
description of distribution uncertainty is useful.

Both probability scores extracted from vg-wav2vec
outperform those from wav2vec2.0; although it is a much
smaller model, vg-wav2vec is better-suited to this task.
The highest correlations is obtained from the predictive
uncertainty Uj,.q of vq-wav2vec, suggesting that uncer-
tainty computed across contrastive logits aligns well with
perceptual features that drive average MOS ratings. As
these logits are related to predicting future frames, they
likely encode temporal coherence and may therefore be
more sensitive to artifacts of generation quality.

D. Correlation with acceptability judgements.

We now examine the relationships with PrefRank
relative acceptability judgements to examine whether
SSL mechanisms encode elements of prosodic realisa-
tion in ways that mirrors human perception. As was
done in Section [[V-Al correlation is computed at the
stimulus level and reported as the mean over all stimuli
Table The same trends of significance were found for
weighted-7; only p correlation is reported for brevity.



Table shows that the correlations with BT scores
are much weaker than MOS for both SSL models—only
a few scores show a significant correlation with a p-
values < 0.05. Although both wav2vec2.0 and wavLM
scores produced moderate correlations with MOS judge-
ments, none of their probability scores show any corre-
lation with relative acceptability judgements. The CTC
fine-tuning for these models encourages encoding of
features linked to intelligibility—which may explain the
correlation to MOS scores—but likely discards prosodic
information used for judging relative acceptability.

Though the statistically significant correlations dis-
played by the vg-wav2vec estimation methods are very
weak, we see slightly stronger relationships for repre-
sentational uncertainty U,., than predictive uncertainty
Uprea. Although the strong correlation between Upyeq
and MOS highlights its sensitivity to features of gener-
ation quality, this score appears less attuned to prosodic
variation within the bounds of acceptability. U, is
computed over the codebook logits which may capture
more phonetic encoding, and thus a greater sensitivity to
fine-grained prosodic differences.

Interestingly, we find that correlation strength depends
on the domain from which the lexical content of the
PrefRank stimuli were drawn. Both uncertainty metrics
from vg-wav2vec show weak but significant correlation
for stimuli generated from read lexical content and no
correlation for conversational stimuli. We hypothesise
that the lack of relationship for conversational stimuli
may reflect a domain mismatch with the LibriSpeech
training data of vg-wav2vcec, or could be a function
of the acceptability ratings themselves. Conversational
speech is more prosodically varied than read speech;
as such, listeners may tolerate or even expect greater
variation in this domain [50]].

VI. DISCUSSION & CONCLUSIONS

As synthetic speech becomes even less distinguish-
able from natural speech, the shortcomings of current
evaluation paradigms are also becoming more apparent
[Z], [8]]. Traditional evaluation metrics like MOS offer
only limited insight into how listeners perceive differ-
ent prosodic realisations of high-quality renditions. We
present a step toward addressing this limitation by inves-
tigating whether self-supervised speech representations
encode a more nuanced perceptual signal: the relative
acceptability of prosodic variation.

In Section we show that SSL representations
are predictive of relative acceptability scores among
prosodic variants of the same text. Even with a small
dataset, a simple supervised model using SSL features
achieves promising performance. These results suggest
that SSL models encode more nuanced perceptual cues
of relevant to listener preference than those reflected

by MOS. However, the correlation between SSL repre-
sentations and acceptability rankings is markedly lower
than their MOS prediction performance, indicating that
prosodic acceptability is more complex and less readily
encoded in current SSL representations. Furthermore,
we find that existing MOS prediction models do not
correlated with PrefRank prosodic acceptability scores,
suggesting that the features important for predicting
MOS may not overlap with those that drive relative
acceptability judgements.

Section [V] explores whether the internal statistical
structures learned by SSL models—reflected in their
probability assignments—correlate with human prefer-
ence judgments in an unsupervised setting. We intro-
duce a novel method for computing model uncertainty
from vg-wav2vec and compare it with a previously
proposed approach. Scores derived from both methods
correlate with MOS scores, suggesting that SSL mod-
els learn structural regularities aligned with perceived
quality; however, correlations with acceptability rankings
are weaker and less consistent. Code-based uncertainty
scores show slightly stronger relationships than those
of predictive uncertainty, but both still fall short of the
supervised results in Section Future work could
explore whether alternative pooling strategies improve
alignment with human judgments; however, these pre-
liminary findings highlight the potential for using model
uncertainty as a lens to understand how SSL mechanisms
encode structure in speech. Interestingly, we also find
that the domain of the speech material—conversational
versus read—affects correlation strength. This may re-
flect domain-dependence in listener judgments, or sensi-
tivity of SSL models to domain-biases in their training
data. Disentangling these effects has implications for
both model development and perceptual evaluation.

Our results contribute to the growing call to shift
how speech synthesis is evaluated by moving toward
a richer understanding of how listeners judge appro-
priateness. Achieving this will require new data, new
metrics, and a closer integration with perceptual studies.
The PrefRank dataset used in this study offers a novel
opportunity to probe relative prosodic acceptability and
is uniquely suited to testing how models and humans
respond to subtle prosodic differences [9]. However,
listener judgments of prosodic variation are shaped by
many aspects of context—for example, the surrounding
discourse or reference stimuli [21], [S1)], [52], [53]—
which are not captured in this paradigm. Additionally, it
remains unclear whether similarly scoring samples are
equally acceptable or equally unacceptable. Integrating
contextual features and grounding relatsive judgments in
absolute acceptability will require new data collection
paradigms. We believe these are fundamental for moving
towards more human-centred evaluation.
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