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Abstract
Surprisal is used throughout computational psycholinguis-

tics to model a range of language processing behaviour. There
is growing evidence that language model (LM) estimates of sur-
prisal correlate with human performance on a range of written
language comprehension tasks.

Although communicative interaction is arguably the pri-
mary form of language use, most studies of surprisal are based
on monological, written data. Towards the goal of understand-
ing perception in spontaneous, natural language, we present an
exploratory investigation into whether the relationship between
human comprehension behaviour and LM-estimated surprisal
holds when applied to dialogue, considering both written dia-
logue, and the lexical component of spoken dialogue. We use
a novel judgement task of dialogue utterance acceptability to
ask two questions: “How well can people make predictions
about written dialogue and transcripts of spoken dialogue?” and
“Does surprisal correlate with these acceptability judgements?”.

We demonstrate that people can make accurate predictions
about upcoming dialogue and that their ability differs between
spoken transcripts and written conversation. We investigate the
relationship between global and local operationalisations of sur-
prisal and human acceptability judgements, finding a combina-
tion of both to provide the most predictive power.
Index Terms: psycholinguistics, spoken dialogue, speech per-
ception, discourse structure

1. Introduction
Recent developments in automatic language modelling have
made it possible to test (and extend) psycholinguistic models of
human language comprehension. In particular, autoregressive
Language Model (LM) estimates of surprisal have been found
to correlate with aspects of language perception, including read-
ing times and grammatical acceptability judgements of written
text. This is thought to be caused, at least in part, by the shared
use of predictive processing that both people and such LMs rely
on [1, 2]. In this work, we explore whether improved language
modelling capabilities allow us to explore perception of more
natural forms of language: interactive communication.

Although monological texts have been the primary testing
ground for psycholinguistic theories of language comprehen-
sion, the cognitive mechanisms for comprehension are tuned to
natural, spontaneous language [3]. To better understand com-
prehension, we must study perception of more realistic lan-
guage. Controlled linguistic stimuli differ from casual language
in numerous ways. In particular, they are often isolated [4].
Accounting for context above sentence-level has been a major
hurdle in modelling realistic perception, but modern LMs al-
low integration of much longer contexts than previously possi-
ble [5, 6].

Speech is perhaps the most intrinsic modality for communi-
cation, but progress in developing models of perceptual salience

for the speech signal has been markedly slower than for its tex-
tual counterpart, with good reason. Although we learn to use
and understand spoken language long before learning to read or
write, it differs from text in a number of ways that make mod-
elling more complex. One feature of particular interest here is
that speech signals are generated using multiple channels of in-
formation transmission: the lexical channel of written language
(which words are used), and an additional non-lexical channel
(how those words are said) [7]. Channel access changes the
way in which we design communicative signals. In this paper,
we ask whether surprisal still aligns with perception in spoken
transcripts.

As a step towards modelling language perception in more
realistic communicative settings, we examine perception though
a novel acceptability rating task over dialogue turns. The task is
designed to be applied to both written dialogues and transcripts
of spoken dialogues, and investigates differences in how lexi-
cal information is distributed between these modalities during
communicative interaction. Following works that have demon-
strated a relationship between LM surprisal estimates and hu-
man comprehension behaviour on written, monological data,
we explore the relationship between different definitions of
turn-level surprisal and human judgements of dialogue.

2. Background
2.1. Surprisal and Language Comprehension

Human language comprehension is often formalised, at least
in part, as a predictive process. Surprisal Theory, one of the
most widely-adopted theories of human language comprehen-
sion, suggests that the cognitive cost of processing a linguistic
segment is determined by how predictable the segment is in its
preceding context [8, 9]. It draws on the information-theoretic
formalisation of surprisal, which quantifies the amount of in-
formation conveyed by a unit as the uncertainty associated with
its occurrence [10]. The standard definition of conditional sur-
prisal is the negative log-probability of a unit in [u1, ..., uN ]
conditioned on its prior context:

S(un) = − log2 p(un|u<n). (1)

Surprisal theory has been used to model a range of hu-
man language comprehension behaviour including processing
of syntactic and pronoun ambiguity, sentence interpretation, and
word predictability effects as measured by self-paced reading
times and eye-tracking studies [11, 12, 13, 14]. As such, we use
surprisal theory as a basis for investigating perception of both
written dialogue, and transcripts of spoken dialogue.

2.2. Surprisal and Language models

Language models have been inextricably linked to surprisal
since their inception. LMs estimate the probability of a word
in context – its predictability. Recent advances in the capability



of LMs to capture longer contexts has prompted the use of LMs
to study language and comprehension behaviour. The primary
focus of such prior works has been sentence comprehension: in-
vestigating the relationship between LM surprisal estimates and
self-paced reading times, gaze duration [13, 14, 15], acceptabil-
ity judgements [16, 17, 18], and brain response data [11, 1].

Though there is general consensus that a relationship be-
tween LM surprisal estimates and human perception exists,
there are still important aspects that require investigation. Ar-
chitectural differences in LMs have been found to influence as-
pects of psychometric predictive power differently [1]. For ex-
ample, [15] find that surprisal estimates from BERT are highly
predictive of acceptability judgments, yet remarkably poor for
reading time estimates, and [13] demonstrates that once per-
plexity is controlled for, syntactic generalization is largely de-
termined by model architecture. The relationship between LM
quality and psychometric predictive power doesn’t necessarily
generalise to typologically different languages [19]. Sentence
processing behaviour is also affected by other linguistic fea-
tures independently of surprisal, including local statistics such
as word n-gram frequency [20, 21].

The predictive power of surprisal estimates has been ex-
plored in other aspects of perception, e.g., essay quality [22],
but there is far less evidence for the relationship between sur-
prisal and perception beyond the sentence processing task.

2.3. Extending surprisal to (spoken) dialogues

The vast majority of computational psycholinguistic theories
have been developed using monologues. However the most fun-
damental forms of language-use are interactive [3]. Theories of
communication are often centered around interaction and col-
laboration, e.g., as a joint process where interlocutors collab-
orate to build common ground [23]. The interactive nature of
dialogue likely requires expectations to be conditioned on addi-
tional pragmatic features and wider discourse context [24, 25].

Automatic language modelling has been similarly focused
on monologue data. Recent work has begun to explore learn-
ing latent spaces that are more suited to dialogue by augment-
ing training objectives to encode dialogue-specific structure and
amplify the importance of temporal dependencies between ut-
terances [26, 27, 28, 29, 30]. However, it is unclear whether
these strategies encourage encoding of the interactive, joint na-
ture of communication emphasized by psycholinguistic theo-
ries.

Although closely related, spoken and written communica-
tion are generated in fundamentally different conditions. The
additional non-lexical channel of speech conveys novel infor-
mation in its own right [31, 32, 33] and interact with the lexi-
cal channel to mark novel content, disambiguate lexical infor-
mation [34, 35], and moderate the distribution of information
during communication [7]. Incrementality also asserts much
stronger pressure in the spoken domain where utterance design
in dialog is often modelled as a parallel and predictive process
[36]. As such, lexical information is likely to be distributed dif-
ferently across written and spoken signals.

3. Experimental Design
3.1. The Human Judgement Task

To test whether different definitions of surprisal reflect percep-
tion of dialogue in the lexical channel of written and spoken
conversations, we present a novel dialogue continuation accept-
ability judgement task. We present participants with a segment

of a dialogue c, followed by a potential upcoming turn r. Fol-
lowing evidence that acceptability judgements are intrinsically
gradient [16, 37], participants rate how plausible r is in the con-
text of c on a scale of 1-5 (“Very Unlikely” – “Very Likely”).

This task is similar to sentence acceptability judgements
which have been widely studied in the context of surprisal.
However, using dialogue turns as a base unit allows us to ex-
plore whether surprisal is predictive of acceptability perception
in both written and spoken dialogues.

3.2. Data

Experiments on spoken dialogue were carried out using the
Switchboard Telephone Corpus [38] which consists of over
2,400 chit-chat style conversations between 542 participants
covering 70 topics. The corpus includes manual transcriptions
and turn segmentations. These telephone conversations are an
ideal data source for this task as speech is spontaneous and com-
pared to other dialogue domains such as interviews, turns are
relatively short, providing a diverse set of upcoming turns from
which to sample. We carry out written-dialogue experiments on
the DailyDialog corpus. This corpus includes 13,100 written
conversations intended to resemble conversations from “daily
life” [39] and thus provides a good match for Switchboard. Dia-
logues were extracted from web pages for English learners and,
similar to Switchboard, span a broad range of topics.

3.3. Language model surprisal

We obtained surprisal estimates using the TurnGPT architecture
[27], a variant of the GPT-2 [40]. Previous works which investi-
gate the relationship between different language models and hu-
man comprehension behaviour consistently demonstrated that
GPT-2 outperforms other comparable language model families
[13, 15]. TurnGPT is trained with cross-entropy loss and uses
an augmented input of three embeddings: token, position and
speaker id, with the latter providing important cues for dialogue
turn structure.

We took several steps to ensure comparability between spo-
ken and written dialogue surprisal estimates. We used the
GPT-2 BPE subword vocabulary, avoiding domain differences
from out-of-vocabulary tokens (50259 tokens). We also re-
moved punctuation except for turn-segmentation from Daily-
Dialog. Our TurnGPT model was trained from scratch on equal
amounts of data from DailyDialog and Switchboard (∼ 4M to-
kens total). We used a slightly smaller architecture compared to
the originally published model, with 8 layers, 8 attention heads,
and an embedding size of 256. To verify that our model does
not overfit, we checked that a 4 layer/4 head model didn’t obtain
lower perplexity on the validation set. The model was trained to
achieve the lowest cross-entropy on a validation set containing
equal proportions of data from Switchboard and DailyDialog.

The model achieves modality-specific perplexities of 60.27
68.31 on DailyDialog and Switchboard, respectively. Surprisal
estimates are scaled by this modality ratio to adjust for inherent
differences in predictability across corpora.

3.4. Behavioural study and Participants

To study a wide range of realistic instances of communica-
tion, stimuli were generated from each corpus by first obtain-
ing contexts with a comparable quantity of information, op-
erationalised as the cumulative per-token surprisal of a set of
turns. This context surprisal measure was normalised by the
corpus perplexity ratio (see Section 3.3) to enable compar-



Table 1: Surprisal measure definitions: r and c are response
and context word sequences resp.

Stotal(r|c) =
∑N

n=1[S(rn|r<n, c)]

Smean(r|c) = 1
N

∑N
n=1[S(rn|r<n, c)]

Srelative(r|c) = Smean(r|c)− Smean(r)

Smax(r|c) = max[S(rn|r<n, c)]

Svar(r|c) = 1
N−1

∑N
n=2[S(rn|r<n, c)− S(rn−1|r<n−1, c)]

2

isons between the written and spoken stimuli. 10 contexts
from each modality were sampled. Each was used to create 10
(dialogue context c, upcoming turn r) stimuli, 1 with the true
upcoming turn, and 9 with negative upcoming turns. Negative
turns were sampled to span the range of conditional surprisals
expected from true (c, r) pairs. In total, 100 stimuli were gen-
erated for each modality 1.

52 participants were recruited from Prolific Academic, all
were native English speakers based in North America. Each
participant was presented with 25 stimuli through a Qualtrics
survey, taking 9±2 minutes to complete. Attention check ques-
tions that were manually selected as extremely likely (including
noun overlap) and unlikely were interspersed throughout each
survey. 20 participants obtained less than 75% overall accuracy
on the check questions; their results were excluded.

3.5. Surprisal on a turn level

Token-level surprisal estimates were obtained from TurnGPT as
the cross entropy loss between predicted and true tokens. From
token-level surprisals, we compare a number of ‘global’ and ‘lo-
cal’ operationalisations of turn surprisal suggested in previous
work, summarized in Table 1 and described below.

Global metrics. Cumulative surprisal, Stotal(r|c), is often
used to model processing effort of an utterance [15]. To elimi-
nate the influence of sentence length, we consider average sur-
prisal per token, Smean(r|c) [16]. We also consider the differ-
ence between the conditional and isolated mean utterance sur-
prisal, Srelative(r|c), to control for the inherent surprisal of an
utterance. Psycholinguistic theories diverge on whether or not
discourse comprehension involves a context-independent analy-
sis before integrating wider discourse context [41]. The isolated
utterance surprisal, Smean(r), is computed as the average sur-
prisal of response turn r conditioned on 100 randomly sampled
contexts within the range of acceptable cumulative surprisal.

Local metrics. We are particularly interested in differences
in information distribution between written and spoken lan-
guage (cf [42, 7]) which may require the additional detail of
local metrics. Thus, we consider maximum per-unit surprisal,
Smax(r|c), as this has been used to capture points of extreme
cognitive load [16]. We also quantify information distribution
as surprisal variance between words, Svar(r|c) [15].

4. Results
Similar to previous works in sentence processing, we exam-
ine the relationship between these definitions of surprisal and

1We provide examples of our stimuli:
https://sarenne.github.io/is-2022/

Figure 1: Score distributions between corpora

Table 2: Correlation between surprisal and median judgement
scores in DailyDialog

Surprisal DailyDialog Switchboard
ρ p-val ρ p-val

Total -0.341 0.001 -0.273 0.006
Mean -0.350 <0.001 -0.299 0.003
Relative -0.360 <0.001 -0.262 0.009
Max -0.407 <0.001 -0.400 <0.001
Variance -0.295 0.003 -0.217 0.038

judgement scores using ρ correlation [16, 15], as well as ordi-
nal regression models.

4.1. Perceptual task

Figure 1 demonstrates that participants were able to distinguish
true turns from negatives samples; 95% and 90% of scores for
true turns were either [4, 5] for DailyDialog and Switchboard,
respectively. Using the highest mean score per stimuli as a
proxy for turn selection, participants obtained respective accu-
racies of 90% and 70%.

Figure 1 also highlights differences between the spoken and
written corpora, particularly that participants make less certain
judgements for Switchboard stimuli. Although score distrib-
tions for true stimuli are similar across corpora, negative stim-
uli from Switchboard receive a wider range of scores – twice as
many were rated as likely ([3, 4]) in Switchboard, and partici-
pants were more likely to rate turns as “Very Unlikely” ([1]) in
DialyDialog stimuli. Because the informativeness of our stim-
uli context was controlled for, differences in score distributions
are likely the result of turn characteristics. This suggests differ-
ences in the informative nature of basic turn units between the
lexical content of spoken and written dialogue, which need to
be explored in further.

4.2. Quantifying predictive power of surprisal

Given that people could leverage the stimuli context to accu-
rately discriminate true upcoming turns from false ones, we
used the plausibility scores to explore the relationship between
human judgements and LM-estimated surprisal characteristics.
If surprisal correlates with perception, we should expect re-
sponses that are surprising in context to obtain lower scores,
i.e., a negative relationship between surprisal and score.

Results in Table 2 demonstrate weak but statistically signif-
icant negative correlation of median score with our operational-

https://sarenne.github.io/is-2022/


Table 3: Ablation from full model: Significant differences (>
2SE) are in bold.

Removed feature ELPD diff SE
Stotal +1.9 0.4
Srelative +0.7 0.9
Smean +0.3 1.2
Smax -9.6 4.3
Svar -2.1 1.9
Corpus +0.3 1.2
All surprisal -39.0 10.5

isations of surprisal. Slightly stronger correlation coefficients
have been reported for related judgements of grammatical ac-
ceptability [15, 16], which likely reflect differences between
tasks. The reasoning required to make predictions about dia-
logue (e.g., pragmatic/interaction features) may differ from fac-
tors involved in making isolated syntactic judgements.

Interestingly, previous works using surprisal estimates from
similar language models find global operationalisations to of-
fer more explanatory power than local ones [15]. Our results
show the maximum conditional surprisal per token to have the
strongest correlation with judgements scores. Again, this varia-
tion may be explained by differences in the reasoning required
for these behavioural tasks.

Because the individual surprisal measures had significant
but relatively weak correlations with median scores, we exam-
ine whether they could provide more information in combina-
tion. Since our perception experiment used a categorical rating
scale (our predictee), we fit multilevel cumulative ordinal re-
gression models (logit link function, uniformative flat priors),
using the R package brms [43, 44]. Our predictors include the
5 surprisal metrics and a corpus indicator. We also include the
context surprisal, and unigram and bigram overlap between the
context and response (weighted by corpus frequency) to con-
trol for these potential sources of variation. Similarly, we in-
clude group level effects (i.e., random intercepts) to control for
for participant and context identity. For brevity, we don’t re-
port group level effects here except to note that we consistently
see non-zero variance associated with members of those groups.
We evaluate models using leave-one-out cross-validation, esti-
mating Expected Log Predictive Density (ELPD) [45].

We perform ablation of the individual surprisal measures
with respect to the model using all predictors to investigate
their contributions to model fit. Table 3 shows the difference
in ELPD with respect to the full model (ELPD diff), as well as
the associated standard error of the difference (SE). We take a
model to have a significantly better fit when the ELPD differ-
ence is more than twice the SE. Removing all surprisal mea-
sures (leaving only n-gram and group predictors) significantly
decreases the fit, indicating that participants were not making
decisions based only on direct lexical matching between con-
text and turn. In general, removing local measures (particu-
larly Smax) reduces the fit, while removing global measures
improves it, though not all differences were significant. Re-
moving the corpus indicator also potentially reduces model fit,
though the change is within the error margin.

Table 4 shows the difference between the full model, mod-
els with local or global surprisal metrics, and combinations
of the two. The model including only global features per-
forms worse than the full model, suggesting that their inclusion
(specifically Stotal) is leading to overfitting. However, the dif-
ference is not significant. Our best-fitting model includes local

Table 4: Differences between models with full, local, and global
features. *corpus adds an interaction between the corpus indi-
cator and the surprisal measures for that model.

Included Features ELPD diff SE
global -8.4 4.4
local +0.6 2.2
local+relative +1.3 1.2
local+mean +2.2 1.0
(local+mean)*corpus +0.4 2.1

(Smax, Svar) metrics with Smean. This indicates that a com-
bination of individually weak predictors needs to be considered
in determining the perceived likelihood of a turn in a specific
context. The 95% confidence intervals for surprisal measure
coefficient estimates and the corpus indicator all exclude zero
(while context surprisal and n-gram measures confidence inter-
vals include zero), supporting a non-zero contribution for these
effects. The estimates indicate that stimuli with higher turn sur-
prisals (Smean, Smax) received lower ratings. However, con-
trary to the correlation analysis, higher word-to-word surprisal
variability (Svar) contributes to higher scores when accounting
for the other metrics. We did not find any further improvement
in model fit from including corpus interaction terms with the
surprisal measures.

5. Discussion and Conclusions
These results have demonstrated that people can make accurate
judgements about upcoming utterances in both written dialogue
and transcripts of spoken dialog based on a fixed amount of
context, but do so less effectively in the later. They confirm the
utility of our task for studying perception of dialogue and indi-
cate that lexical information is distributed differently between
written and spoken dialogue (potentially an effect of the dif-
ferent channels available in these modalities). The results also
probe the perceptual validity of the response selection paradigm
used throughout conversational language modelling [26, 29].
Although people can accurately discriminate between true and
false upcoming turns, there is often more than one plausible re-
sponse for a given context [46].

We then explored the predictive power of global and local
operationalisations of surprisal for this communication-based
task. In some ways, our findings are complementary to pre-
vious works – all operationalisations displayed weak but sig-
nificant correlation with human judgements across written and
spoken dialogue. However, we found differences in the respec-
tive utility of local and global surprisal compared to previously
reported results on monologue-based tasks [16, 15, 13].

Combinations of global and local operationalisations pro-
vided the highest predictive power for our task. Surprisingly,
once other sources of variation had been accounted for, Svar

had a positive effect on the fit of the logistic regression model
such that more variance between turn tokens produces higher
rating. Further investigation of the utility of different surprisal
metrics and their interactions is required.

Stimuli used in this work were sampled within a fixed range
of cumulative context suprisal. People have been shown to
make effective predictions in dialogue using very little context
[47], but testing different amounts of context could provide in-
sight into how much information people use to make judge-
ments. Given that LM architecture is known to affect the ex-
planatory power of surprisal estimates, future work could also
compare estimates from different architectures [13, 15, 16].
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