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Abstract
Though a word may be the most intrinsic unit of language, it can be separated into 2
distinct components - form and meaning. The goal of this project is to explore how
these 2 components are related, firstly by quantifying the form-meaning relationship
itself though the use of statistical analysis, and secondly by examining potential ex-
planations for such a relationship from a cultural evolution perspective by simulating
language acquisition. The first strand of this project reveals that the form-meaning re-
lationship is extremely arbitrary but more complex that reported in previous research,
highlights potential flaws in previous methodologies, and provides direction for future
work. The second strand of this project presents experimental and theoretical evi-
dence which suggests that such arbitrariness may facilitate both language acquisition
and use, thus providing partial explanation for the high degree of arbitrariness in the
form-meaning relationship.
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Chapter 1

Introduction

1.1 Motivation

A word – arguably the most intrinsic unit of language – is made up of 2 fundamental
components: its form and its meaning. Form is essentially the shell of a word, the
way it looks and sounds, while meaning is its core, its denotations, connotations, and
associations. Interest in the form-meaning relationship stretches back for centuries to
scholars in the late 1600’s such as Wilkins who attempted to create a ‘perfect’ system-
atic language [102], and even earlier to Shakespeare’s infamous line:

‘[...] That which we call a rose
By any other word would smell as sweet’ — Romeo & Juliet, Shake-

speare W.

The motivation for this study stems from one of the most prominent ideas within the
study of the form-meaning relationship: Arbitrariness of the Sign. The notion was put
forward over a century ago by the Swiss linguist De Saussure and states that a word’s
form is completely unrelated to its meaning [31].

There are widely-accepted exceptions to the notion, notably sound symbolisms like
onomatopoeic words who’s forms imitate their referent like ‘bang’ and ‘splash’, and
phonaesthemes, a term coined by Firth to describe a sound systematically related to
a specific meaning such as the ‘gl’ set relates to an aspect of light (‘glow’, ‘glitter’,
‘gleam’, etc) [38]. However, the vast majority of linguistic models of human language
have assumed an arbitrary relationship between form-meaning mappings and it is even
considered by some linguists to be a fundamental design principle of language [79]
[53].

Computational and cognitive linguistics offers the means to study the form-meaning
relationship quantitatively by applying powerful statistical methods to language. Re-
cent studies have used such methods to provide evidence against Arbitrariness of the
Sign, reporting diffuse but statistically significant correlation between form and mean-
ing across the mental lexicon, referred to throughout this study as global phonoseman-
tic systematicity [47] [90] [74] [43] [93] [72]. Such findings have implications for how
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8 Chapter 1. Introduction

cognitive processes like language acquisition, use and multi-sensory integration are
modelled, as well as for our understanding of the neural mechanisms which drive the
organisation and storage of language.

Research with a cognitive basis suggests that a richer relationship between form and
meaning is driven by a deep-seated relationship between human neural mechanisms
for language and language itself [21]. Such theories compare language to a dynamic
organism that adapts and evolves under the pressures human cognition, and the ever-
changing environment [58]. They suggest that features of language are poised to si-
multaneously optimise cognitive processes like language acquisition, expression, and
comprehension which are often rely on opposing properties of vocabulary structure.
Gaining deeper insight into the form-meaning relationship will provide better under-
standing of the processes that shape it.

1.2 Outline

This project involved 2 quite distinct, but highly related components - the first involves
a quantitative analysis of the relationship between form and meaning in a representative
subset of English; the second explores how this relationship may impact and interact
with the use and acquisition of language.

Analysing the form-meaning relationship requires a thorough understanding of form
and meaning, and how they can be studied to extract information about their underlying
relationship. Chapter 2 provides a summary of relevant aspects of semantics and form,
as well as a critical review of similar studies which highlights some of the challenges
to studying the form-meaning relation and is used to motivate the design of the cur-
rent experiment. The results of the current experiment were only partially aligned with
previous findings and shed light on some potential flaws in previous research, namely
the applicability of the statistical analysis performed in previous studies, and the va-
lidity of conclusions drawn about the global nature of phonosemantic systematicity.
Analysis of current and previous results culminate to conclusions that the global form-
meaning relation is more difficult to analyse that previously reported, most likely due
to oversimplification of the effects of local pockets of phonosemantic systematicity on
the global form-meaning relationship. All findings provide evidence that global vocab-
ulary structure is highly arbitrary. The experimental design, results, and conclusions
are presented in Chapter 3.

The second component of this study focuses on why such an arbitrary vocabulary struc-
ture might exist. Chapter 4 provides an overview of theories for how cognitive pro-
cesses and environmental factors have shaped, and are shaped by the form-meaning
relationship from a cultural evolutionary perspective [58]. Such theories provide a ba-
sis for the experimentation presented in 5; simulations of language acquisition were
designed to test 2 hypotheses regarding how acquisition is affected by the size of the
vocabulary and the integration of contextual cues which encode semantic information.
Learning is generally supported by structure and thus systematic vocabularies would
be expected to enhance language acquisition. Both hypotheses present theories for
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how arbitrary form-meaning mappings may provide an advantage to language acqui-
sition and thus provide some explanation for the high degree of arbitrariness in form-
meaning mappings. Chapter 5 presents the different experimental designs, results, and
conclusions. Investigations into each hypothesis demonstrated that integrating useful
contextual information during acquisition produces an advantage to acquisition when
learning arbitrary mappings, and that vocabulary size affects how quickly this advan-
tage occurs; learning trends were found to be robust to different phonological feature
representations but sensitive to language features like phonological set variation.

1.3 Contributions

Contributions can be split into the 2 components of this study. The first component
involved collaboration with Hanne Carlsson, as detailed below.

Phonosemantic Systematicity This section was based on Shillcock et al. [90]
which introduced a number of novel methods for quantifying the relationship between
form and meaning.

• Implemented Shillcock et al.’s methods for measuring lexicon-wide phonose-
mantic systematicity, and testing it’s significance with several modifications in-
cluding enhanced representation of word semantics and alternative phonological
representation

• Designed 5 phonological form representations which required the production
of linguistically-sound phonological feature vectors; the best metric involved
adapting the Levenshtein algorithm to produce edit distances between sets of
vectors.

• Established strong linguistic and computational basis for implementational mod-
ifications and design choices.

• Obtained results that oppose several similar papers, highlighting complexities in
the form-meaning relationship that weren’t considered in previous research [74]
[93].

• In-depth, critical analysis of the methodology and conclusions from previous
studies based on the current results and related research.

Parts of this section were completed in collaboration with Hanne Carlsson, specifi-
cally the basic implementation of Shillcock et al.’s method, and the implementation of
vector-based phonological form representations.

Language Design This section focused on the cognitive aspect of vocabulary struc-
ture and its relation to the language acquisition process.
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• Successfully reimplemented language acquisition simulations to test the hypoth-
esis that arbitrary vocabulary mappings maximise the effect of contextual infor-
mation on language acquisition [73].

• Tested the validity and robustness of simulations by making phonologically-
based improvements.

• Experimentally evaluated the hypothesis that vocabulary size indirectly affects
vocabulary structure in conjunction with theoretical evidence.

• Provided evidence that arbitrary form-meaning mappings may facilitate lan-
guage acquisition.

• Critically analysed simulations, especially with respect to realistic language ac-
quisition.



Chapter 2

Background: Phonosemantic
Systematicity

The overall aim of this project is to examine the links between how words are repre-
sented in 2 respective feature spaces, form and meaning, both of which can be defined
in many ways.

The first strand of this study involves quantifying this relationship. This requires a
deep understanding of form and meaning, and how they can be studied to extract in-
formation about their relationship. This section begins by detailing word form and
corresponding representational methods, followed by semantics, particularly how they
can be represented, and which aspects of semantics are important in the study of form
and meaning, and finally the notion upon which this study is based (Arbitrariness of the
Sign). The chapter finishes with a review of related research to inspire the experiment
design detailed in the following chapter.

2.1 Form

Form acts as a word’s superficial shell - the way it looks and sounds. The procedures
for quantifying form used through out this study involve the use of phonological and
orthographic features, both of which will be detailed below.

2.1.1 Phonology

Though language has multiple mediums, spoken sounds must be the most elementary
mode of communication. Phonology involves the study of systematic use of sounds as
linguistic items across and between languages [61]. Though closely related, it is im-
portant to draw a distinction between phonetics and phonology; phonetics is concerned
with the physical aspect of sound production and perception, while phonology deals in
a more abstract component of sound, specifically how different sounds in a language
can establish different meanings [61].

11



12 Chapter 2. Background: Phonosemantic Systematicity

Phonemes are language-specific sound elements that distinguish words from one an-
other. Though they are often often used as the basic building blocks of phonology,
phonology can be studied at representational levels both above and below phonemes
– syllables and distinctive features, respectively [61]. Both units are used throughout
this study to build phonological word representations and are described below.

2.1.1.1 Syllables

Though phonologists from a range of domains have long accepted the importance of
syllable units, there is little agreement regarding the specific definition of a syllable.
This highlights the complexity imbued throughout natural language - there is evidence
that neural mechanisms for processing syllabic information are already established
in children of only a few months old and that syllabic segmentation is easier than
phoneme segmentation [41] [63], however definite characterisation of the concept re-
mains blurry.

A general interpretation of syllables used throughout this project is as the structural
units that determine the melodic organisation of phonological strings, influencing rhythm,
tone, and stress patterns of a language [45]. Though this study is interested in the form-
meaning relationship across all language, examining all words of a language is impos-
sible. To obtain a representative set of words, an important aspect of the strategy used
throughout this study is to consider frequently-used words (further details in section
3.1.1) [90] [74]. Syllabic filtering is a useful tool here; empirical evidence demon-
strates that 50 of the most frequent words in the 100-million-word British National
Corpus are monosyllabic [36]. Further theoretical support comes from Zipf’s Law of
Abbreviation, which states that frequent words are shorter [81] [104]. He argued that
such a property is characteristic of human lexical systems to optimise communicative
efficiency by maximising concision while minimising communicative effort expended.

Syllables are comprised of combinations of phonemes. Though syllable structure
varies between languages, a typical syllable model includes 2 components: the on-
set consonant which can be obligatory, optional, or restricted, and the rime depicted
in figure 2.1. The rime consists of the nucleus vowel, optionally followed by a coda
consonant [96].

Figure 2.1: Syllable Structure of the word plant [23]
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2.1.1.2 International Phonetic Alphabet

The International Phonetic Alphabet (IPA) is a system of phonetic notation devised
to allow a standardised representation of sound in languages [6]. The framework cur-
rently includes 107 letters and 52 diacritic for describing pronunciation accents, com-
binations of which can be used to represent phonemes and syllables.

2.1.1.3 Distinctive Features

Each IPA symbol can be uniquely identified by a particular setting of phonological
features specifying the associated articulation and acoustics [24]. First formalised by
Jakobson in 1941 and further developed by Chomsky and Halle, distinctive features
are one of the most prominent set of phonological features [19]. Though variations
exist, traditional features are binary to indicate feature presence or absence. This
project based phonological feature representations on Riggle’s Phonological Feature
Chart which includes 23 distinctive features for 72 IPA symbols, as well as additional
information about articulatory classes, symbol variants, vowel structures, and diacrit-
ics [84]. Features of the chart take values of {+,−,0}, which were encoded for this
project as {1,−1,0} (full chart is included as figure A.2 in Appendix A)

Distinctive features are most commonly used to characterise phonemes but the features
themselves can be grouped into subcategories: major class, laryngeal, manner, and
place [60].

IPA Consonants The manner class of distinctive features describes the configuration
of speech organs (the tongue, lips, palate) to create a specific sound and is an important
feature set for classifying consonants [50]. Common categories of IPA consonants
based on the manner features include:

• Plosive: consonants which cause an interruption to airflow and sound

• Fricative: consonants which involve a severe narrowing of the airflow

• Affricate: combinations of plosive and fricative sounds

• Nasal: consonants involving some airflow through the nose to maintain sound
throughout oral airflow interruptions.

IPA Vowels Similarly, the set of Place features are often used to distinguish vowel
classes using high, low, front, back, and tensity features so describe the position of the
tongue during articulation [51].

Chart A.2 displays such categorisations for both consonants and vowels.
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2.1.2 Orthography

Rather than sound, orthography is concerned with visual, written language. A large
component of orthography revolves around the ordering of orthographic units - graphemes.
Different writing systems use graphemes to symbolise varying degrees of represen-
tation: logographic systems such as Chinese involve graphemes that represent mor-
phemes, syllabic system graphemes map to syllables of languages such as Japanese
or Cherokee, while most European languages make use of alphabetic graphemes that
roughly correspond to phonemes [67].

An interesting characteristic of alphabetic orthographies is orthographic depth. This
notion characterises the correspondence between the graphemes of an orthography and
the phonemes of the corresponding phonological language; shallow orthographies like
Spanish consist of letters isomorphic to phonemes, while the letter-phoneme relation-
ship is much less direct in deeper orthographies like English, where letters can have
multiple pronunciations, and phonemes can be written in varying ways [42]. DeFrancis
argued that the function of writing systems is to represent spoken language, and thus
the psychological mechanisms required to process a writing system are constrained
by those required for processing the spoken language. The set of phonemes and mor-
phemes of a spoken language are therefore major constraints to the development of
corresponding writing systems [32]. Though phonological form is the main focus of
this study, orthographic form was also examined as a comparison.

2.2 Semantics

Following the analogy of form as the shell of a word, the semantic core enables the
transfer of information and ideas between people and is a crucial component of this
study, specifically how semantics can be represented, and which aspects of seman-
tics should be representation. An official definition from Encyclopaedia Britannica
reads ‘semantics is the scientific study of meaning in natural and formal languages’
[34]. Though processed by humans subconsciously, defining semantics in such a way
that computers can interpret them is a difficult task [27]. Some projects like WordNet
and FrameNet involve manually-constructed databases of semantic-based word group-
ings by hierarchical relations, grammatical properties, and other features [71], [86],
however the most prevalent method, and the one used throughout this study, relies on
context.

The idea was initially credited to English linguist, John Firth, as early as 1957. Firth’s
quote can be found in nearly every piece of Natural Language Processing research:

‘You shall know a word by the company it keeps’ — John Firth [37]

Firth’s quote, sometimes referred to as the distributional hypothesis, encapsulates an
area of linguistics essential to this project: distributional semantics [49]. Though seem-
ingly simply, the concept has proven to be extremely powerful as a foundation for
word embeddings like Google’s Word2vec and Stanford’s Glove vectors which repre-
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sent words as vectors with features corresponding to contextual information such that
words with similar contexts appear close in vector space [78], [70].

Word meaning is supported by a number of language aspects such as syntax and mor-
phology. Interestingly, Firth’s idea captures this feature – it can be applied to both
syntactic and semantic information extraction by changing the size of the contextual
window used to construct semantic vectors [56]. This study attempts to examine word
meaning at a very fundamental level and required careful consideration of which as-
pects of semantics to retain and which to ignore. The most important decisions con-
cerned how word meanings would be represented, and which words to represent; con-
cepts involved in these decisions are detailed below.

2.2.1 Word Embeddings

Distributional semantics aims to quantify the semantics of linguistic matter using dis-
tributional properties in language data [49]. Though distributional vector spaces have
been used to represent language data since the 1960s [88], word embeddings as we
know them were originally coined by Bengio et al. in their series of papers ’A Neural
Probabilistic Language Model’ in the early 2000s [12]. Nearly a decade later, work em-
beddings have gained extensive popularity across a vast array of language processing
domains including sentiment and bias detection, machine translation, and search opti-
misation, as well as areas of cognitive science such as the study of communication and
language acquisition [55]. The rapid inflation of interest and use is largely attributed to
similar increases to the availability of computational power and massive corpora like
the Google Book Corpus, Google N-Gram Corpus, and the Wikipedia Corpus [68] [29]
[97] [9] which made training reliable, domain-tailored vectors feasible [8].

Embedding algorithms can be personalised to specific tasks, and trained on different
sets of text to capture domain-specific information, making them an ideal tool to ex-
plore the relationship between word form and meaning. There is a huge range of rep-
resentations and implementations - this section provides an brief overview of popular
methods.

2.2.1.1 Definition

Machine/Deep Learning methods are constrained to dealing with numerical data [56].
Converting language to numbers offers the opportunity to apply powerful analyti-
cal methods to information previously thought to be strictly qualitative, but also to
concepts and ideas which are fundamentally human. Word embeddings provide a
mechanism for such translation [70]. An embedding function W maps words to high-
dimensional vectors such that:

W : word→ Rn

Mapping procedures vary in application and complexity; in the simplest of forms,
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a word embedding can be a 1-hot-encoding specifying the presence of a particular
word in a vocabulary. Popular mapping processes can be separated into 2 broad
classes - frequency-based and prediction-based embeddings. Modern implementations
of both classes perform similarly [44]; this study employs prediction-based embed-
dings, specifically Word2Vec [70], the details of which are described below.

Prediction-Based Embeddings While frequency-based methods use deterministic
operations to construct vectors, prediction-based embeddings are obtained by training
a neural network to maximise its predictive capabilities. The network’s inputs and out-
puts are 1-hot encoded vectors of size (1∗V ) where V is the vocabulary size; like other
unsupervised feature-learning tasks, the value of the task is in the weights learned by
the neural network which become the target word’s context vector [55]. Two impor-
tant training strategies are Continuous Bag of Words (CBOW) and Skip-gram, both of
which are shallow neural networks.

CBOW predicts the probability of a target word occurring in a given context. Given a
contextual window of size n, the network is fed n 1-hot representations of the words
before and after time step t, and predicts the probability of each word in the vocabulary
occurring at t. With appropriate optimisation, CBOW training is generally faster than
Skip-gram [8].

Skip-gram uses the opposite strategy - words are used to predict their neighbours.
Given the 1-hot vector representation of a word, the network learns to predict the prob-
ability that each word in the vocabulary is a neighbour of the input word. Skip-gram
often out-performs CBOW when representing rare, ambiguous words [11].

(a) CBOW Model (b) Skipgram Model

Figure 2.2: Predition-based Methods [69]
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2.2.1.2 Word2Vec

Put forward by Mikolov and a team at Google, Word2Vec is an extensive toolkit for
creating word embeddings using either of the 2 predictive-based mapping methods de-
scribed above [70]. A popular extension of Word2Vec methods is Facebook’s fastText
library for generating language representations based on the skip-gram mapping pro-
cedure which treats words as sets of n-grams rather than atomic entities [14]. Along
with tools for constructing representations, fastText also offers a range of pre-trained
word vectors in a number of languages.

This project makes use of fastText pre-trained vectors to construct semantic represen-
tations. FastText was chosen as it offers a set of vectors trained on articles from Simple
English Wikipedia, an edition of Wikipedia written in a simplified subset of regular En-
glish aimed at English learners [26]. The lexicon selected in this study is constrained
to relatively simple, common words (as detailed in section 3.1.1) and thus well-suited
to the Wikipedia Simple English vectors.

2.2.2 Morphology

Morphology involves the study of word structure and relationships between words of
the same language [4]. Morphological patterns play important roles in the organisa-
tion of language and provide communicative cues regarding word meaning [65]. For
example, plurals are often marked with an inflectional morpheme like ’s’ in English,
or through morpheme reduplication in languages like Somali, while grammatical cate-
gory can also be inferred from morphological construction, such as inflectional endings
in English like ’ly’ for adverbs and ’ing’ for verbs [73].

To explore the form-meaning relationship, the initial components of this study involved
teasing apart different language aspects that contribute to meaning, namely the effects
of morphology on semantics. Significant morphological concepts used through this
study will be discussed below.

Words An important distinction in morphology is between word forms and lexemes.
Word forms refer to specific inflection of a words while lexemes encompass the set of
inflections of a particular word, represented by a lemma [92]. Though word forms offer
interesting information about syntactic relations, lemmas provide more concentrated
semantic information and thus are the focus of this study.

Morphemes On a lower level, Linguistics consider words to be constructed from
indivisible units of meaning - morphemes. Morphemes can function independently
as words (free morphemes), or can act on each other to alter the semantics or gram-
matical function of a word (bound morphemes) [92]. The morphological typology of
a language describes the general patterns of word construction from morphemes; ty-
pological categories include Synthetic languages which rely heavily on the affixation
of bound morphemes to free morphemes to convey meaning, and Analytic languages
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where sentences can be composed entirely of free morphemes, making morphology
less important for meaning depiction than features like word-order [99]. English con-
tains properties of both typological categories and thus morphological word construc-
tion was important aspect of this study [2].

Word Formation Every language contains specific morphological rules for construct-
ing meaningful semantics; such rules can often be divided into 2 categories - forma-
tional and inflectional [54]. For the purpose of this project, formational rules are more
interesting as they involve the generation of semantics by relating and creating new
lexemes through compounding or blending [92] [46]. On the other hand, inflectional
rules are generally used to express grammatical categories, such as tense, person, and
gender using prefixes, suffixes, and infixes which can produce inflective forms of a
lexeme [54]. These provide syntactic regularities which are important components of
language, but are not of interest for this project. One way to remove the effects of
bound morphemes is to focus on words with a single, free morpheme.

2.3 Arbitrariness of the Sign

De Saussure was one of the first linguistics to make a distinction between word form
(the signifier) and concept (the signified). This contribution forms the basis for this
study. Put forward by De Saussure over a century ago, Arbitrariness of the Sign speci-
fies that the orthographic and phonological forms of a word are unrelated to its meaning
[31]. Though the existence of localised sets of exceptions to De Saussure’s notion such
as onomatopoeic words and phonaesthemes (reoccurring phonetic clusters in words of
related meaning [38]) have long been accepted, the property became a psycholinguis-
tic convention as well as a foundational assumption in many linguistic theories. Some
even consider the property as a defining characteristic of well-designed communication
systems [53].

2.4 Previous Works - Phonosemantic Systematicity

Computational linguistics offered the means to test De Saussure’s property by quanti-
fying the form-meaning relationship with powerful statistical analysis. Most directly,
this involved the study of how relationships between linguistic items in a form-based
space map to the corresponding relationships in a semantic space [43]. Multiple papers
in this vein have reported evidence against the Arbitrariness of the Sign notion in the
form of correlations between phonological and semantic distance mappings than are
greater than would be expected by chance - a property coined phonosemantic system-
aticity [47] [90] [74] [43] [93] [72].

Phonosemantic systematicity has been reported on both local and global levels: strong
correlations in localised subsets of words, and a weak systematicity across the entire
lexicon [47]. Though the validity and effects of local phonosemantic systematicity in
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the form of sound symbolism have long been accepted, relatively little is known about
lexicon-wide systematicity [74].

The first goal of this project was to quantitatively analyse the form-meaning relation-
ship, specifically the existence of global phonosemantic systematicity. A thorough
review of related literature and similar studies was completed to examine the advan-
tages and potential pitfalls of previous methods. 3 significant papers studying global
and local phonosemantic systematicity and the corresponding interactions were key
for guiding and justifying the design of Experiment 1 (presented in section 3.1). All
3 made use of the general methodology introduced by Shillcock et al., demonstrating
the robustness of the method, and consistency of corresponding results.

Even so, consensus was not complete; papers provided opposing evidence regarding
the global nature of the reported systematicity, and some doubts about the general
methodology arose during the current study. Details of findings, methodologies, and
conclusions from all 3 papers are discussed below.

2.4.1 Shillcock et al.

Shillcock et al.’s research [90] was the first paper to claim global phonosemantic sys-
tematicity through a small but statistically significant correlation between form and
meaning using a representative subset of English. For every pair of words in their set
of monomorphemic, monosyllabic words, semantic and phonological similarities were
calculated to compute a correlation value between the 2 similarity score sets; the cor-
relation was deemed statistically significant using a randomisation test - comparing the
true correlation to the distribution of correlations obtained by repeating the procedure
after randomly reassigning form-meaning mappings. Details of their implementation
and methodology, as well as some criticisms, can be found in section 4.1 Methodology.

Their experimentation introduced 3 novel methods; the first for studying phonoseman-
tic systematicity through the correlation between phonological edit distances (form)
and distributional semantic distances (meaning), and the second for asserting statisti-
cal significance using a domain-tailored randomisation test.(see section 3.3 for further
details), both of which have been re-implemented [74] [47] [93]. The consistency of
results obtained in subsequent papers using both methods initially supported their use
as a basis for our experimental design [47]. Potential weaknesses in the method related
to the correlation analysis were encountered during experimentation and are detailed
below (section 3.2).

Their third contribution was a per-word systematicity score based on correlation values
of only word pairs including the target word. Per-word scores demonstrated that sys-
tematicity is unevenly distributed across the lexicon and that a large proportion of the
correlation mass is conserved within 4 word categories - speech editing terms like ’oh’,
’er’, and ’ah’, pronouns, proper names, and swear words. Shillcock asserted that high-
correlation words are ’communicatively important’ as higher correlation indicates that
the rest of the mental lexicon contributes heavily to cementing the meaning of a word
based on its phonological form.
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2.4.2 Monaghan et al.

Monaghan et al. [74] examined both global and local phonosemantic systematicity,
as well as the relationship between a particular word’s systematicity score and age of
acquisition. The first component of their paper is particularly relevant to the design
of Experiment 1 as both methods introduced by Shillcock are used to examine the
form-meaning relationship.

The Shillcock correlation procedure was tested over different sets of English words,
and implemented using multiple representations of phonology and semantics to assess
the robustness of the reported phonosemantic systematicity and ensure that it is in-
dependent of how phonology and semantics are represented. Monaghan highlighted
the fact that 70.9% of English word uses are monosyllabic, a strong argument for ap-
plying monosyllabic filtering to our dataset. Some interesting phonological distance
measures were employed, however the same correlation measurement issues as the
Shillcock paper remained. To test the significance of correlations between the different
similarity sets, Monaghan et al. used the Mantel randomisation test to recreate Shill-
cock’s randomisation and similarly found more systematicity than expected by chance
for all word sets and representations [66]. Their consistent results over phonological
and semantic representations, as well as different vocabulary sets, strongly endorsed
Shillcock’s mechanisms for measuring phonosemantic systematicity, and its respective
significance.

Monaghan et al. derived their own per-word phonosemantic systematicity score based
on the effect of removing the target word on the overall form-meaning correlation.
The primary use of such scores was to study language acquisition; using scores in con-
junction with age of acquisition ratings, Monaghan et al. found that systematicity is
more pronounced in words learned earlier and concluded that vocabulary structure pro-
motes early language acquisition using systematicity [74]. However, they noted that
though statistically significant, global phonosemantic systematicity could be a side-
effect of localised pockets of highly correlated words. To this end, the secondary use
of phonosemantic systematicity scores was to produce a distribution of systematicity
across the lexicon. When compared to the topology of systematicity distributions in
randomised vocabularies, Monaghan et al. concluded that global phonosemantic sys-
tematicity, as measured with Shillcock et al.’s method, is not a consequence of local
phonosemantic systematicity but rather a feature of the entire vocabulary.

2.4.3 Gutierrez et al.

Based on evidence for local and global phonosemantic systematicity from 2 sepa-
rate veins of research - behavioural studies, and statistical analysis - Gutierrez et al.
aimed to combine both research strands by means of 2 innovations: kernel regres-
sion to enable flexible lexicon-wide analysis that can better account for the existence
of local phonosemantic systematicity, and a metric-learning algorithm for learning
weighted edit distances between word-form representations and optimised to minimise
kernel regression errors [47]. Though Gutierrez et al. primarily measured systematic-
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ity using kernel regression through the quality of semantic predictions given form-
representations, Shillcock et al.’s systematicity measurement procedure was also em-
ployed.

Aside from these original contributions, Gutierrez et al.’s experiments included other
deviations from Shillcock et al. and Monaghan et al.; form representations were based
on orthography rather than phonology, and semantic context vectors used by Shillcock
et al. [90] and Monaghan et al. [74] were replaced with Word2Vec embeddings. When
using the Shillcock et al. methodology, Gutierrez et al. achieved comparable, though
slightly higher, correlation to Monaghan et al. on the same dataset using simple ortho-
graphic edit distance. Interestingly, their correlation coefficient increased by a factor
of 5.7 when optimised weighted edit distances were used [47]. Similarly to Shillcock
et al. and Monaghan et al., Gutierrez et al. confirmed the significance of all of their
correlation scores using a variation of the Mantel randomisation test.

The use of kernel regression allowed a more flexible modelling of global phonose-
mantic systematicity by accounting for local systematicity, and produced predictions
of semantic representations given form representations. Such predictions were used to
estimate semantic distances between words. Gutierrez et al. found that their estimates
and the true distances were much more highly correlated (r = 0.1028) and statistically
significant. This result provides further support for both the of phonosemantic system-
aticity, however highlighted potential weaknesses in previous research in the handling
of local phonosemantic systematicity.

Gutierrez et al. developed another variation of per-word systematicity score - words
with lower regression errors had higher systematicity scores. As would be expected,
words with high scores included phonaesthemes like ’fluff’, ’flutter’, and ’flick’ as well
as onomatopoeic words, however Gutierrez et al. noted that contrary to Monaghan
et al.’s results, systematicity did not appear to be randomly distributed through the
lexicon. Further discussion of these results is presented in section 3.5





Chapter 3

Experiment 1: Phonosemantic
Systematicity

For the past century, linguistic theories have leant on De Saussure’s notion of Arbi-
trariness of the Sign, however research from related fields suggests a more nuanced
relationship between form and meaning where arbitrariness is complemented by sys-
tematicity to enhance functions of language processing [31] [33] [59]. Given that
language is replete with structure on grammatical, syntactic, and morphological levels,
it would not be surprising to expect systematicity between the phonology and seman-
tics. Such a property would greatly facilitate language acquisition by allowing known
words to guide learning and understanding of new words [74]. However, systematic-
ity reduces the ability to discriminate between word meanings, introducing potential
for confusion and inability to convey novel meaning by crowding mappings between
form and meaning [43] [73]. Given that one of the powers of language is enabling
communication, pressure to maintain discriminability is also to be expected.

The onset of this project involved quantifying the relationship between form and mean-
ing under the competing pressures for systematicity and discriminability, specifically
examining the existence of the global phonological systematicity referred to by Mon-
aghan et al. among others [74]. The current implementation was based on the research
of Shillcock et al. who reported global phonosemantic systematicity as a small, but sta-
tistically significant correlation between phonological and semantic distances of words
pairs in an important subset of English [90]. Our aim was to make implementational
modifications to the dataset, and form and semantic representations to improve the
reliability and accuracy of results.

This chapter describes the procedure used to examine the form-meaning relationship,
specifically the lexicon selection, algorithms for defining form and meaning spaces,
and the corresponding findings. Results are somewhat inconsistent with previous re-
search and highlight potential flaws in both the current implementation and previous
methods.

23
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3.1 Methodology

To analyse the relationship between form and meaning, a representative subset of the
English language was extracted from CELEX, including only monomorphemic, mono-
syllabic words. CELEX is one of the largest annotated lexical databases and contains
morphological, orthographic, and phonological information for English, Dutch, and
German [7]. A number of phonological and semantic similarity scores were computed
for each word pair to create a sets of

(semanticsimilarity, phonologicalsimilarity)

tuples used to compute phonosemantic correlation. The statistical significance of the
correlation was assessed using a randomisation test.

This experiment was based on Shillcock et al.’s research [90], with modifications made
to a number of elements. The Shillcock et al. experimentation involved 5 major com-
ponents:

1. Lexicon selection: A subset of English words (monomorphemic and monosyl-
labic) was extracted from CELEX to maximised representativeness and min-
imise the effects of morphologically related pairs on the global correlation.

2. Phonological similarity computation: phonological distance between the CELEX
IPA representations for every word pair was computed using a dynamic pro-
gramming implementation of the Levenshtein minimum edit distance algorithm
(Wagner-Fischer [100]) applied to a penalty scheme between pairs of phones.

3. Semantic similarity computation: semantic distance between pairs was defined
as the cosine distance between vector representations. These consisted of 500-
dimensional co-occurrence vectors trained on the British National Corpus (BNC).

4. Correlation calculation: Phonosemantic systematicity was reported as the Pear-
son correlation score between the sets of similarity scores.

5. Statistical significance calculation: once the correlation for true form-meaning
mappings had been calculated, the statistical significance was assessed using a
domain-specific randomisation test

This section describes our own implementation, as well as justifications for design
modifications.

3.1.1 Lexicon Selection

Language can be a tricky form of data to manipulate and analyse. The aim of this
research is to examine the form-meaning relationship across an entire language, how-
ever accounting for all words is impossible for a number of reasons. A subset of
English similar to the Shillcock et al. lexicon was extracted from CELEX to pro-
vide a small, representative sample of the average mental lexicon: the monosyllabic,
monomorphemic subset of English [74].
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Interestingly, Monaghan et al. also removed historically-related words by disregarding
word pairs with corresponding entries in etymological dictionaries [74]. Historical
dependencies play an important role in vocabulary construction and thus were included
in the current experiment to maintain as representative and large a sample as possible.

The set of 52447 English words in the CELEX database was reduced to 3284 monosyl-
labic, morphemic words before creating all possible word pairs. Duplicate pairs were
removed, resulting in 5387143 pairs. All preprocessing procedures are detailed below.

3.1.1.1 Syllabic Filtering

The epl.cd file of the CELEX database contains at least 8 fields with phonological
information pertaining to each English CELEX word, as shown in table 3.1. The 8th
field, PhonSylBCLX, contains a phonetically syllabified word representation with syl-
lables separated intro list elements ([..]) of CELEX IPA characters [7]. Extracting
the monosyllabic words involved filtering such representations, retaining only those
containing 1 syllable.

Table 3.1: Example of epl entry for "smile"

ID
Num

Head Cob Pron
Cnt

Pron
Status

Phon
Strs
DISC

Phon
CVBr

Phon
Syl
BCLX

42844 smile 2892 1 P ’sm2l [CCVC] [smaIl]

Although this filtering process reduced our dataset from 52447 words to 6760, previous
research argues that monosyllabic words are a representative sample of the average
mental lexicon [74] [104].

3.1.1.2 Morphemic Filtering

Monomorphemic words were extracted from the 4th field of the eml.cd file, MorphStatus,
where monomorphemic words can be identified by the code M as displayed for the
monomorphemic word ‘smile’ in table 3.2. The CELEX English word set contains
7401 monomorphemic words, of which 3284 were also monosyllabic.

Table 3.2: Example of eml entry for "smile"

ID Num Head Cob Morph
Status

Lang Morph
Count

...

42843 smile 1488 M – 1 ...

Morphemic filtering was an equally important filtering step as morphological regular-
ities and language-specific syntactic constraints discussed in section 2.2.2 would have
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likely dominated the form-meaning correlation. Tamariz noted that including syntactic
information in her dataset substantially increased the resulting phonosemantic system-
aticity in an subset of Spanish, though the importance of such filtering depends on the
morphological typology of the language in question [93] [99].

3.1.1.3 Duplicate Filtering

Though the aforementioned filtering processes produced a representative lexicon, a
final stage of filtering was deemed necessary after exploring the similarity score tu-
ples for all word pairs in the lexicon. CELEX stores multiple copies of a particular
word form if it correspond to different meanings (also known as homonyms), however
Word2Vec only assigns each word form a single vector, regardless of the number of
corresponding meanings. For example, words like ‘bank’ (the edge of a river) and
‘bank’ (to depend on something) are semantically distinct and thus the form ‘bank’
would appear multiple times in the filtered lexicon but each would be assigned the
same semantic vector. Therefore, they were removed to avoid skewing the correlation
score with ambiguous semantic representations.

This final filtering process removed 260 word pairs, resulting in a final set of 5387143
words pairs.

3.1.2 Form Space

Previous research used of a range of methods to define similarity between word forms
with each paper using slight variations [74] [47]. This experiment involved 5 original
variants based on previous research, separated into 2 classes:

• Direct Distance metrics: methods that measure form similarity directly.

• Vector representations: methods that convert forms into vector representations
before measuring vector similarity

To account for phonology, all methods must convert words into sequences of phono-
logical feature vectors corresponding to IPA symbols before computing phonological
distance. The conversion from strings to feature-sets is detailed below, before descrip-
tions of each metric and their respective strengths and weaknesses.

Distinctive Feature Set Generation This process first involved creating a feature
vector for each CELEX IPA symbol. CELEX symbols were first converted to IPA us-
ing chart A.1; feature vectors were then assigned using Riggle’s Phonological Features
Chart (v11.02) [84] (further chart details in section 2.1.1.3). Most CELEX IPA sym-
bols could be assigned a feature vector directly from the Riggle chart A.2, however
there were a few cases that required additional consideration:
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3.1.3 Phonological Features Chart

• ’:’ : IPA contains additional suprasegmentals to indicate stress and intonation.
’:’ is applied to vowels to indicate the vowel is long. In the current implemen-
tation, ’A:’ indicated that the proceeding vowel should be duplicated.

• Certain CELEX vowel symbols, such as 3 and V, were not explicitly contained in
Riggle’s feature chart. Therefore, they were extracted manually from the vowel-
relation chart which indicates specific vowel features ([front, back, tense,
rnd, high, low]) . The 17 other features are consistent across all vowels. Full
vectors for both symbols are displayed in table 3.3

Table 3.3: Distinctive Feature Vectors manually extracted for 3 and V

Feature 3 V

Cons -1 -1
Son 1 1
Syll 1 1
Lab 1 1
Rnd -1 -1
Cor -1 -1
Ant 0 0
Dist 0 0
Dor 1 1
High -1 -1
Low -1 -1
Back -1 1
Tense -1 -1
Phar 1 1
Voi 1 1
Sg -1 -1
Cg -1 -1
Cont 1 1
Stride -1 -1
Lat -1 -1
Drel -1 -1
Nasal -1 -1
Long -1 -1

Orthographic representations were converted into sets of phonological feature vectors
corresponding to each CELEX IPA symbol. For example, the word ‘smile’ would be
converted into a set of 4 feature vectors for the CELEX IPA symbols [s, m, aI, l]

3.1.3.1 Direct Distance Metrics

The direct form-distance metrics implemented in this experiment were:
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• Minimum Edit Distance (Orthographic)

• Minimum Edit Distance (Phonological)

• String Substitution Edit Distance (Phonological)

This section presents the basis, design, and justification for each metric.

A common method for measuring the distance between sequences of items is the Lev-
enshtein algorithm [62]. Generally applied to strings of characters, Levenshtein de-
termines the minimum number of edits (MED) required to transform one string into
another. Edit operations include character insertions (ins), deletions (del), and sub-
stitutions (sub); operation costs can vary, but traditionally, ins and del cost 1 while
sub costs 2.

Shillcock et al. measured phonological edit distances between word pairs using a
dynamic-programming implementation of Levenshtein (Wagner-Fischer [100]) where
substitution costs were determined using a manually-devised penalty scheme between
phonological feature vectors from the Festival Speech System [94]. Feature differ-
ences such as vowel length and consonant voicing were assigned small penalties while
vowels-consonant conversions received high penalties. Shillcock noted that the penalty
scheme could be more ’psychologically realistic’ [90]. Rather than attempt an im-
proved feature-based penalty scheme, our metrics act directly on distinctive features
which encode differences between features, consonants, and vowels explicitly.

The definitions of Levenshtein operations were modified such that sub cost is base
on the number of features differing between 2 phonological feature vectors as demon-
strated [75]:

sub

1
1
0

 ,
 1
−1
1

= ∑

∣∣∣∣∣∣
1

1
0

−
 1
−1
−1

∣∣∣∣∣∣= ∑

∣∣∣∣∣∣
 0

2
−1

∣∣∣∣∣∣= 3

Costs for ins and del are more difficult to define. 2 phonological variations of the
Levenshtein algorithm were implemented; each models insertions and deletions differ-
ently. Traditional Levenshtein was also applied to orthographic word representations.

Of the 5 current metrics, the direct phonological distance (Phonological MED and
MSD) metrics have the strongest theoretical basis for capturing meaningful phonology
than the vector representations for 2 reasons. Our phonological Levenshtein variations
require fewer assumptions than both Shillcock et al. and Monaghan et al. distance
metrics, but most importantly, the phonological similarity scores from Levenshtein
feature edit distance have been found to match such human similarity judgements [89].

Orthographic MED The original Levenshtein algorithm was applied directly to or-
thographic representations of words to produce a simple baseline for measuring word
similarity based on form, the results of which could be compared to Gutierrez’s control
results [47].



3.1. Methodology 29

Phonological MED The first modified Levenshtein metric involved defining a con-
stant cost for ins, del operations based on 1/2 the mean cost of substitution between
all IPA symbols to maintain the traditional balance of costs between ins, del, and sub.
Similar phonological distance measures have been found to match human judgements
of phonological similarity [89].

ins,del=
1
2
(
∑

n
i=1, j=i+1sub(si,s j)

n(n−1)
2

)

ins,del=
∑

n
i=1, j=i+1sub(si,s j)

n(n−1)

where i, j ∈ set(IPAsymbols), n = |set(IPAsymbols)|.

Phonological Minimum Substitution Distance (MSD) The second metric was im-
plemented to further reduce the assumptions involved in computing distance by remov-
ing the constant cost constraint on ins and del operations [75]. Instead, ins and del
operations were modelled as substitutions between the target symbol and a zero vector.

Similarity A simple conversion was applied to obtain similarity scores from dis-
tances:

similarity(u,v) =
1

1+distance(u,v)

3.1.3.2 Vector Representation

Representing form as a vector enables different aspects of phonological form to be
captured in vector magnitude and direction. To convert phonological feature vectors to
a single vector, 2 composition functions were employed:

• Mean of feature vectors

• Concatenation of feature vectors

Mean Feature Vector Used as a baseline, this operation encoded the presence of
phonological features and resulted in 23-dimensional vectors, allowing form compari-
son in a relatively low-dimensional space.

However, mean phonological feature vectors do not provide reliable form representa-
tions. The largest source of information loss is due to disregard for the ordering of
phonological symbols which results in distinct words sharing phonological representa-
tions such as d0g and g0d. Though this metric includes some notion of the phonology,
time is a key component of language and must be accounted for.
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Concatenation of Feature Vectors Another composition function that encodes some
information about phone ordering is concatenation. All feature vectors were concate-
nated before being padded with zeros to the length of the longest concatenation word
vector. The experimental lexicon contains relatively short words, with the longest word
containing 7 phones; thus all vectors were of dimension 7∗23 = 161.

Though order is accounted for, simple concatenation weights orderings too strictly.
Consider the simple example - words ‘trip’ and ‘rip’ (trIp, rIp) are as phonologically
similar as ‘trip’ and ‘trap’ (trIp, tr&p) however in the concatenation space, the latter
pair will match on all dimensions representing [t, r, p] while the former pair will
not align exactly on any.

3.1.4 Semantic Space

The semantic space in our study is based on the same distributional principles as
used by Shillcock et al., however the current implementation made use of fastText’s
Wikipedia Simple English pre-trained vectors in the hopes of building a more robust
and representative feature space [14]. The two most important modifications were the
vector features themselves, and the corpus used to create them.

To construct semantic representation, Shillcock et al. used a set of 500 context words
from the BNC such that vector features corresponded to the occurrence frequency of
each context word within a window of ±5 words from the target word. Shillcock et
al. were required to reduce their lexicon to ensure reliable semantic representations,
noting that vector reliability diminishes with frequency. FastText vectors were chosen
in part to circumnavigate this problem as words are represented in 300 dimensions by
combinations of n-grams, thus reducing the effects of word frequency on reliability.

The Wikipedia Simple English corpus [26] was particularly well-suited to this task as
it’s vocabulary consists of common, relatively short words which matches the mono-
syllabic phonological constraint of this experiment and could result in more reliable
semantic representations of such words [104].

3.1.4.1 Semantic Similarity

Similarly to the Shillcock et al. implementation, semantic similarity between vectors
u, v was computed using 1− cosine(u,v) [83]. A common problem in high dimen-
sional spaces is skewing of distance metrics like Euclidean or Manhattan as the ratio
of distances to nearest and furthest neighbours approaches 1, making cosine similarity
a more reliable metric in the current semantic space [1]. Furthermore, semantic simi-
larities are better described by similarities between the direction of vectors, rather than
their magnitude, which are captured more aptly by cosine distance [74].
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3.2 Correlation

Correlation coefficients are one of the primary tools used to quantify relationships
between variables and have been a popular method for studying the form-meaning
relationship. Though each coefficient has different characteristics, all metrics vary
between [-1 and 1] – the strongest disagreement and agreement respectively, where 0
indicates no relationship.

In our experiments, the variables of interest are the sets of semantic and form-based
similarities between word pairs. Much of the previous research reports correlation
scores using the Pearson coefficient, however characteristics of our dataset detailed
below provided strong evidence against its applicability in this domain (see Discussion
and General Conclusions section (3.5)). The Spearman coefficient was found to be
more reasonable and thus was also computed. This section provides details of both
coefficients.

3.2.1 Pearson

Given 2 variables X and Y , the Pearson correlation coefficient measures variable asso-
ciation based on the following formula:

r =
∑

n
i=1(ui− ū)(vi− v̄)√

∑
n
i=1(ui− ū)2

√
∑

n
i=1(vi− v̄)2

where ū = 1
n ∑

n
i=1 ui and v̄ = 1

n ∑
n
i=1 vi

Though the more popular statistic, the Pearson coefficient is based on 2 relatively
strong assumptions about the variables in question – both must be normally distributed,
and linearly related to each other [64]. The results of the current implementation are
reported in Pearson to allow comparison to previous studies, however neither assump-
tion could be asserted in this experiment.

3.2.2 Spearman

Spearman’s correlation coefficient makes no assumptions about the distribution of data
and is applicable to non-linearly related variables. It is calculated using the same
formula as the Pearson correlation metric where calculations are based on the rank
of variable observations rather than the explicit observation values [64].

r =
∑

n
i=1(qi− q̄)(ri− r̄)√

∑
n
i=1(qi− q̄)2

√
∑

n
i=1(ri− r̄)2

where ri,qi denote the rankings of u,v respectively, r̄ = 1
n ∑

n
i=1 ri and q̄ = 1

n ∑
n
i=1 qi
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As neither the distribution of form-based distances, nor the quality of the relationship
between them could be assumed to match the Pearson assumptions, Spearman’s corre-
lation measure is a better choice of statistics for the current experimentation.

3.3 Statistical Significance

Statistical significance was measured using the same method as Shillcock et al. [90].
After computing a correlation value, a tailored randomisation test was used to demon-
strate how the true correlation compares to what would be expected if form-meaning
mappings were entirely arbitrary (the null hypothesis).

Figure 3.1: Significance testing: comparing the true correlation score to the distribution
of correlation scores for randomised vocabularies. This is an example of Phonological
MED.

To produce vocabularies under the null hypothesis, each word was randomly paired
such that form-meaning mappings in the random vocabulary were based on the orig-
inal word’s phonological representation and the paired word’s semantic representa-
tion. Phonosemantic correlations were calculated for 1000 randomised vocabularies to
produce a distribution of correlation scores that would be expected if mappings were
entirely arbitrary.

Figure 3.1 demonstrates the statistical significance testing for correlation obtained us-
ing Phonological MED; true correlation is 5.77 standard deviations away from the
randomised distribution mean (z = 5.77) – strong evidence against the null hypothesis.
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3.4 Results

Current results highlight some issues that were noted during experimental design,
namely the validity of the form-based distance metrics described in 3.1.2 and the
choice of correlation metric detailed in 3.2, however the results also shed light on
some unforeseen deviations from previously reported findings which are explored in
this section.

3.4.1 Pearson Correlation & Statistical Significance

Table 3.4: Pearson Correlation & Statistical Significance

Distance Metric Pearson Correlation r z score p score

Orthographic MED 0.0060 1.15 0.06
Phonological Feature MED 0.0169 5.70 <0.0001
Phonological Feature MSD 0.0237 8.70 <0.0001
Mean Feature Vector 0.0416 6.97 <0.0001
Concat. of Feature Vectors 0.0204 4.25 <0.0001

As can be seen from the p and z scores in table 3.4, the correlation between semantic
similarity and form similarity for all the form distance metrics replicate the statistical
significance reported by Shillcock, Monaghan, and Gutierrez, except for orthographic
MED which is still considered ’marginally significant’ by convention [87].

Even so, actual correlation values are not as consistent as those reported by papers
in section 2.4 Previous Works and displayed in table 4.2. Some divergence is to be
expected, as both phonological and semantic distances are computed differently across
all papers. Other implementational differences were tested as potential explanations,
including different conversions between distance and similarity, and lexicon variations.

Pearson correlation assumes a linear relationship between variables and therefore would
be affected by the conversion function from distance to similarity. Another similarity
conversion based on Sanders and Chin’s phonological distance algorithm was tested,
which involved normalising phonological distances between [0,1], before subtracting
them from 1 to produce similarity scores [89]:

similarity(u,v) = 1− (
phonologicalEditDistance(u,v)
maxPhonologicalEditDistance

)

This produced marginally smaller Pearson correlation scores and thus did not account
for divergence between our correlation scores and those previously reported. Interest-
ingly, current correlation scores match comparable previous results much more closely
when the duplicate removal step (detailed in section 3.1.1.3) is ignored, as can be seen
in table 3.5.
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Table 3.5: Pearson Correlation Comparison. The Pearson correlation scores for the
Cleaned and Raw datasets (duplicates removed and retained) compared to the most
relevant correlation scores reported in previous research.

Distance Metric Clean r Raw r Shillcock r Monaghan r Gutierrez r

Orthographic
MED

0.0060 0.0167 – 0.016 0.019

Phonological Fea-
ture MED

0.0169 0.0464
0.061 0.034 0.046

Phonological Fea-
ture MSD

0.0237 0.0539

Mean Feature Vec-
tor

0.0416 0.0427 – – –

Concat. of Feature
Vectors

0.0204 0.0220 – 0.031 –

Figure 3.2 demonstrates the changes to significance tests when duplicates are retained.
Such filtering wasn’t discussed in previous papers, all of which also extracted lexicons
from CELEX database, and could explain differences in correlation values.

Figure 3.2: Significance testing - comparing the true correlation of Phonological MED
obtained with and without duplicate pairs

3.4.2 Spearman Correlation & Statistical Significance

Figures 3.3(a) and 3.3(b) display similarity scores obtained from a direct distance
metric and a vector-based distance metric, respectively.
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(a) Phonological MED

(b) Concatenation of Phonological features

Figure 3.3: Form-meaning similarity scores for different Phonological distance metrics

As noted in section 3.2, the Pearson correlation metric involves strong assumptions
about the variables being measured: that they are both continuously distributed, and
linearly related. Throughout the study, it became clear that although semantic and
vector-based form similarity scores met the first criteria, the direct distance metrics for
computing form-based similarity did not, as displayed in figure 3.3. Table 3.6 further
supports the discrete nature of phonological similarity scores obtained through direct
distance metrics.

For reference, there were 54049 unique semantic similarity scores.

Aside from the variable distributions, there is no reason to expect a linear relationship
between form and meaning. Both assumptions provide support for discarding Pearson.
Tamariz reached a similar conclusion about the use of Pearson correlation, opting in-
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Table 3.6: Direct Distance Metrics produce discrete similarity score distributions

Form-Based Distance Metric Number of Unique Values

Orthographic MED 9
Phonological Feature MED 328
Phonological Feature MSD 111

Mean Feature Vector 66459
Concat. of Feature Vectors 45139

stead for a domain-specific variant of Fisher Information to measure distance between
languages [93]. The standard Spearman correlation coefficient avoids both Pearson as-
sumptions and was selected for its simplicity. It was also noted that although ignoring
duplicate removal had a large impact on Pearson correlation, the effects on Spearman
were negligible, further supporting the robustness of the Spearman metric. Scores are
recorded in table 3.7.

Table 3.7: Spearman Correlation & Statistical Significance

Distance Metric Spearman Correlation r z score p score

Orthographic MED -0.0402 9.97 <0.0001
Phonological Feature MED -0.0251 4.98 <0.0001
Phonological Feature MSD -0.0073 1.33 0.09

Mean Feature Vector 0.0354 6.15 <0.0001
Concat. of Feature Vectors 0.0113 2.13 0.02

As can be seen in table 3.7, the correlation values for all direct distance metrics are
negative while all vector representations are positive; 2 inferences can be drawn from
these results. Firstly, given the assessment of the direct and vector-based distance
measures in the Form Space section (3.1.2) which asserted the theoretical weaknesses
of our vector-based representations, the differences in score sets provide further evi-
dence to reject both the vector-based representations. Second, the negative correlation
scores obtained by all direct distance metrics would imply that similar-sounding words
are more likely to have distinct meanings. Given that all 3 previous studies claim a
positive correlation between form and meaning, the current results were thoroughly
checked.

A possible explanation for negative values is the Spearman coefficient’s inability to
handle ‘ties’. The discrete nature of phonological edit distances resulted in many tied
phonological similarities scores (displayed in figure 3.3(a)) which could have skewed
Spearman’s r. The Kendall τ coefficient is another standard rank-based correlation
coefficient which includes tie-handling and was computed across all distance metrics
[64]:

τ =
nc−nd

nt
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where nt =
1
2n(n−1) and nc, nd are the numbers of concordant, discordant pairs.

Kendall correlation scores, as well as Spearman scores, are displayed in table 4.5.
Though all Kendall scores are slightly smaller than Spearman scores, the similarity
between both correlation scores across all form-based measures implies that ties do
not provide an explanation for negative correlations.

Table 3.8: Kendall & Spearman Correlation Scores

Distance Metric Spearman Correlation r Kendall Correlation τ

Orthographic MED -0.0402 -0.0310
Phonological Feature MED -0.0251 -0.0170
Phonological Feature MSD -0.0073 -0.0050

Mean Feature Vector 0.0354 0.0233
Concat. of Feature Vectors 0.0113 0.0072

Though significant negative correlation scores are surprising given that previous re-
search agues a converse relationship, there is nothing inherently incomprehensible
about such findings, especially given some of the issues with previous research dis-
cussed above. Tamariz also finds significant correlation for some datasets using an
alternative to Pearson, however as her metric is positive definite and unrelated to Spear-
man correlation, it is comparing resulting values is irrelevant [93].

One of the motivating factors behind studying the relationship between form and mean-
ing, as noted in this chapter’s Introduction (Chapter 3), is understanding how the op-
posing pressures exerted by language use and language acquisition affect the structure
of the vocabulary; though phonosemantic systematicity increases the ease of acquiring
language, it also increases ambiguity in communication. Tamariz presents research
suggesting that vocabularies contain specific phonological parameters responsible for
systematicity and discriminability to reflect these conflicting forces [93]. A plau-
sible explanation for the statistically significant, negative correlation between form
and meaning reported above is that our measure may capture more information about
phonological features that respond to pressures favouring the discriminability of words
and opposing systematicy.

3.5 General Discussion & Conclusions

Over a century ago, De Saussure put forward the Arbitrariness of the Sign notion, im-
plying that the relationship between word for and meaning was arbitrary [31]. Though
local sets of exceptions have long been accepted, Shillcock et al. was the first study
to examine the global characteristics of the form-meaning relationship [90]. The pa-
per introduced 3 novel methods to study the overall phonosemantic systematicity, its
statistical significance, and it’s distributed across the lexicon, all of which have been
reimplemented in proceeding studies.
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The current experimental design drew inspiration from Shillcock et al.’s study among
others to quantify the form-meaning relationship, aiming to achieve more reliable re-
sults by modifying the dataset, and the form and semantic-based word representations
as detailed in section 3.1. Shillcock et al. drew 2 conclusions; first, that the monomor-
phemic, monosyllabic subset of English displays weak, global phonosemantic system-
aticity, and second, that it is distributed unevenly such that mass is concentrated over
communicatively important words [90].

Though the current study replicated the significance of phonosemantic systematic-
ity measured with Pearson correlation reported in previous studies, questions arose
throughout the study about both the validity of our own implementation, as well as the
general methodology which cast doubt on the validity of previous conclusions, specifi-
cally the reported correlation scores, and the claims that such correlations imply global
phonosemantic systematicity.

3.5.1 Correlation Coefficients

As discussed in the Correlation section, though Pearson coefficients are widely re-
ported in previous research, neither of its foundational assumptions, namely continu-
ous variable distributions, can be asserted. This issue initially seemed purely a matter
of statistical definitions, however it’s importance grew significantly when Spearman
correlation scores indicated drastically different conclusions about the form-meaning
relationship.

It can be argued from table 4.3 that vector-based representations currently implemented
meet the Pearson assumption of being continuously distributed, but the same is not
possible for the direct distance metrics. Although direct distance implementations vary
across studies, the general nature of direct distance metrics indicates that this may have
been the case in previous studies as well – Tamariz also noted that Pearson was not
applicable in her experiment for this reason. This is strong support for rejecting the
Pearson metric.

3.5.2 Global Phonosemantic Systematicity

All previous research, including the current Spearman correlation results, have pro-
vided some evidence that the correlation between form and meaning measured using
Shillcock et al.’s general methodology is statistically significant [90] [73] [47] [93].
However, it’s difficult to demonstrate whether this correlation is simply a side-effect
of highly systematic pockets in the lexicon, like phonaesthemes and onomatopoeic
words, or whether it is a global characteristic of the lexicon. All papers cited above
also demonstrated that systematicity is unevenly distributed across the lexicon; Mon-
aghan et al. used characteristics of their systematicity distribution to support Shillcock
et al.’s claim that systematicity is a global property across the lexicon [73], however
the argument is not entirely convincing. Some questions about their reasoning and
methodology, as well as some counter arguments, are discussed below.
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Monaghan et al. base per-word systematicity on the effect of removing the target word
on the lexicon-wide correlation score, such that words whose removal leads to greater
decreases in overall correlation are more systematic. To test the global feature claim,
Monaghan et al. used the Wilcoxon signed-rank test to compare the rankings of the
systematicity distribution across the true lexicon to the systematicity rankings across
distributions lexicons with randomly shuffled form-meaning mappings [101]. Results
were further controlled with Bonferroni correction to avoid the ‘multiple comparison
problem’ [13]. Finding that the null hypothesis (that the systematicity rankings of the
true distribution could be expected under completely arbitrary conditions) could not be
rejected, Monaghan et al. claim that observed systematicity is not a consequence of
local highly-correlated word sets, but rather a global feature across the lexicon.

This rank-based test compared the topology of the systematicy distribution over the
true lexicon to those of completely arbitrary vocabularies. If localised pockets of
systematicity were at the heart of the overall systematicity, the topology of per-word
systematicity over the true vocabulary would be distinct from those of randomised
vocabularies. Though Monaghan’s results are interesting, they are based on Pearson
correlation; reasons why this metric is inappropriate have already been discussed. Per-
haps more importantly though: from a purely logical perspective, failure to reject the
null hypothesis is not sufficient evidence for accepting it.

Gutierrez et al.’s also studied effect of local sets of highly correlated words on the
overall form-meaning correlation. Though Gutierrez employed Shillcock et al.’s gen-
eral methodology of measuring form-meaning correlation, they proceed to measure
overall systematicity based on the quality of semantic distance predictions using 2 in-
novations which provide greater model flexibility and ensure that effects local sets of
phonosemantic systematicity are reliably captured in a global analysis [47]:

• Kernel Regression: This framework avoids making assumptions about the preditor-
target variable relationship by basing predictions on the target values of nearby
points in predictor space. This provides a drastic increase in modelling flexibility
when compared to the Pearson correlation which assumes relationship linearity.

• SMLKR: This algorithm learns optimal weightings for Levenshtein edits. String
MED assumes equal weighting across substitution edits, however previous re-
search demonstrates that phonological and orthographic attributes play different
roles in phonosemantic systematicity - for example, shared consonants drive se-
mantic similarity while shared vowels promote distinct semantics [93] [25].

Gutierrez et al. find substantially higher systematicity using their methodology, hy-
pothesising that effects of localised phonosemantic systematicity are underestimated in
direct form-meaning correlation experiments. Using their own per-word systematicity
measure based on the SMLKR model regression error and the systematicity distribu-
tion over word sets sharing 2-letter beginnings, they test this hypothesis by studying the
likelihood that each word set exhibits the same mean regression error if systematicity
was randomly distributed over the lexicon. p-values are used to represent this likeli-
hood and are defined as the percentage of randomly selected word sets with a lower
mean regression error than the target set. If systematicity were randomly distributed
across the lexicon, each word-beginning set would have similar mean regression errors
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therefore one would expect a uniform distribution of p-values across word-beginning
sets, however Gutierrez et al. findings do not conform to such a distribution. What’s
more, word beginnings with statistically significant p-scores correspond to phonaes-
themes [77].

3.5.3 Conclusions

A number of conclusions can be drawn from the analysis of the current results. First,
although previous research provides evidence for a positive correlation between form
and meaning in a representative subset of English, when measured with an appropriate
correlation metric, the relationship appears to be slightly negative. This would imply
that words with similar form are more likely to convey distinct meanings, a conclusion
which is not unfathomable.

Second (and most important), the current experiment demonstrated that drawing firm
conclusions about the form-meaning relationship is more nuanced that previously re-
ported, specifically regarding the effects of local pockets of highly-systematic words.
Correlation scores and their statistical significance measuring using the Shillcock et
al. method are highly dependent on the experimental design - from the algorithms
used to measure semantic and form-based distance, to the conversion between dis-
tance and similarity, and to the choice of dataset. Though such variability seems to be
diminished by the use of Spearman correlation metric which avoids the strong Pearson
assumptions, it is an undesirable characteristic for scientific conclusions and implies
that systematicity may be less robust than previously claimed.

Third, along with raising questions about the robustness of phonosemantic system-
aticity and the Shillcock et al. method for examining it, this study also cast doubt on
claims that such systematicity is a global feature of the lexicon. Results from Gutierrez
et al. and Tamariz provide convincing evidence that the effects of highly systematic lo-
cal pockets were underestimated by assuming a linear relationship between form and
meaning, and an equal weighting of phonological attributes (ie. Levenshtein edits)
with respect to systematicity [47] [93].

3.5.4 Future Work

The current experiments make a strong case for rejecting the Pearson correlation co-
efficient to measure phonosemantic systematicity due to the nature of the distribution
of phonological similarity scores when measured with direct distance metrics, but also
to avoid making unsupported assumptions about the nature of the form-meaning re-
lationship. Future work should take care when selecting their metrics to quantify the
relationship.

There are some clear improvements that could be made to the current implementation,
especially regarding vector-based phonological representations, the results of which
were for the most part ignored in this study; an improvement that was considered
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involved the using the Levenshtein algorithm to guide padding which would better ac-
count for ordering and thus produce more reliable representations. Better phonological
word representations could have implications for speech recognition or synthesis sys-
tems. However, as noted in the discussion, measuring correlation directly may not be a
suitable method for quantifying the form-meaning relationship; further study into the
weightings produced by Gutierrez et al. concerning the different roles of phonological
and orthographic attributes may lead to more interesting findings about the specific
roles of phonological features in language acquisition or use [47] [93] [25].

As noted in section 2.1.2, the orthographic depth principle characterised how closely
the orthography and phonology of a language are related. This would be an interesting
property to consider in future work that investigates the roles of different orthographic
and phonological symbols in driving systematicity or distinctiveness, especially how
these roles differ between languages.





Chapter 4

Background: Language Design

Language has evolved to a precarious optimum, balancing between tensions caused
by evolutionary and social forces, the mutually incompatible goals of minimising ef-
fort and maximising accuracy, and the characteristics of language systems required
for acquisitions and use [65] [103] [73] [21]. The first strand of this study provided
some insight into the relationship between form and meaning and the high degree of
arbitrariness; the second strand explores how such a vocabulary structure interacts with
cognitive processes, specifically language acquisition. This section details some causes
and effects of the vocabulary structure.

4.1 Vocabulary Structure

Even under the De Saussurian assumption that the form-meaning relationship is arbi-
trary, language structure exhibits systematicity stemming from a number of widely-
accepted sources. The most studied displays of systematicity are pockets of local
systematicity discussed in sections 2.3 and 2.4 which can be language specific, tak-
ing the form of sound symbolism, onomatopoeic words, and phonaesthemes, but also
occur at a general level. For example, expressives referring to size, distance, and shape
across languages have consistently been found to contain different vowel classes; those
denoting large size contain low vowels while those denoting small size contain high
vowels [82] [52] [98]. There is growing evidence for the strength of such effects –
the ‘bouba-kiki’ effect is the robust tendency to associate sounds requiring rounded or
angular mouth shape with similarly-shaped objects and has been demonstrated to bias
face-name mappings in the same way [10]. Another important source of systematicity
is morphology which effectively reflects semantic features like grammatical category
in word form and is a key component of the compositional nature of language con-
struction [58] [30].

Though Experiment 1 did not produce definite conclusions for the degree of system-
aticity in the vocabulary, results provided evidence that the overall relationship be-
tween form and meaning is overwhelmingly arbitrary. Arbitrary form-meaning map-
pings introduce a high cost for language acquisition as the existing mental lexicon of-
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fers no assistance in determining correct semantic mappings for novel words. This has
troubled researchers from as early as the 1600’s [20]. One such example is Wilkins’
’Essay Towards a Real Character and a Philosophical Language’. Published in 1668,
Wilkins attempted to create a language based entirely on scientific principles, where
letters map systematically to meaning classes, that would be free from the ambiguity
and irregularities that permeate natural language [102].

Wilkins demonstrated that it was possible to create a ’perfect’, systematic language but
why hasn’t language evolved this way?

4.2 Counteractive Forces

Multiple features of language structure have been posited to arise from the need to
balance counteractive forces, many of which stem from the evolutionary principle of
least effort [103]; for example, Clark and Wilkes-Gibbs [22] assert that utterances
in dialogue are designed to minimise the joint effort of the speaker and listener for
production and comprehension, respectively. The form-meaning relationship is no
different - a host of opposing pressures must be considered to understand the balance
between systematicity and arbitrariness in the form-meaning relationship, a number of
which are discussed below.

4.2.1 Cognitive Processes: Acquisition vs. Expression

The power of language lies in enabling communication – the transfer of complex in-
formation and ideas. Such expression first requires language to be acquired. These
2 processes depending on opposing characteristics of language; given that these are
2 most crucial language processing tasks, it is hard to imagine that language has not
evolved to optimise both.

Language learning involves learning mappings between form and meaning, as well as
how the specific language groups words into semantic categories through the use of
language-specific features like morphology and grammar. Learning such categories is
facilitated by simple, structured, systematic mappings; learning true and artificial cat-
egories is facilitated by systematic phonological coherence between forms belonging
to each category [39] [17] [57]. Systematicity allows the existing mental lexicon to
contribute to the acquisition of new words, thus reducing the amount of effort required
for learning [73]. From an acquisition point of view, the level of arbitrariness in the
vocabulary is especially strange.

Expression, on the other hand, is enhanced by arbitrary mappings. The goal of ex-
pression is to convey potentially novel meanings that will be understood precisely
and reliably by listeners while reducing the effort required for language production
[21]. From an Information Theory perspective, systematic mappings represented in
the form-meaning space can be described using a small set of components. These can
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become crowded as the vocabulary increases, thus increasing the potential for interfer-
ence between words [43]. Not only does this increase the probability for confusion in
communication, but it also makes the expression of novel ideas more difficult as the se-
mantics of every word will constantly be diluted with the connotations of neighbouring
phonological words [73].

4.2.2 Evolution: Transmission vs. Expression

The competing pressures of cognitive processes can be reformulated from an Evolu-
tionary point of view [16]. The fact that a system as complex as language can be
acquired and used with very little effort suggests an intrinsic evolutionary relationship
between the neural mechanisms responsible for language, and language structure itself.
This could be interpreted as biological evolution – the brain has evolved to suit lan-
guage – however the rate of change in language far exceeds the rate of genetic change,
implying that language has evolved and adapted to human neural mechanisms in a pro-
cess of cultural evolution [21]. This idea was put forward by Darwin who compared
language to a complex organism of highly connected constraints which evolves under
the antagonistic pressures of human cognition and determines the survival of linguistic
items [28]; language must be expressive enough to be useful, while being simple to
allow transmission between generations.

Transmission of language is closely linked to the ease of acquisition; it relies on lan-
guage being compressible to minimise the cost of precisely conveying any meaning
[58]. Compressibility is enhanced by systematicity, which allows languages to be de-
scribed concisely. As expected, learners are naturally biased to such languages as
compressed mental representations require less effort to learn [18].

Expressivity in the context of evolution is constrained by the same goals as described
above – favouring arbitrary mappings which allow the reliable transfer of distinct, po-
tentially novel meaning with minimal effort – however can also be interpreted in terms
of compressibility. Though transmission requires high system compressibility, expres-
sivity favours the compressibility of individual signals which is generally compromised
by system compression [58]. Take for example the word ’run’: a compressible system
would most likely contain the past tense ’runned’, however ’ran’ is a more compress-
ible individual signal.

4.3 Potential Explanations for Arbitrariness

These opposing pressures offer some explanation for the extreme degree of arbitrari-
ness in form-meaning vocabulary mappings, especially the forces exerted by the need
to enhance expressivity. An additional explanation arises from the fact that language
doesn’t occur in isolation. The context in which language is learned and used pro-
vides a multitude of cues which guide and constrain the semantic interpretation of a
corresponding form [73].
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Contextual information that accompanies language can stem from many sources - so-
cial cues like the model of participants, eye gaze, gesture, and tone of voice, environ-
mental cues like the saliency of present features or objects, or cues embedded directly
in language [3] [40] [15]. Computational models of language acquisition that include
contextual information are better able to capture aspects of human language learning
like mutual exclusivity and object individuation [40].

Context directly affects language structure by providing new solutions to optimise
forces acting on language, such as those discussed above. For example, it has been
posited that all efficient communication systems will contain some ambiguity as long
as context encodes some information to guide semantic interpretation; ambiguity al-
lows the reuse of sounds and words that require less effort to produce and understand,
and if context encodes useful semantic information, unambiguous languages would be
at least partially redundant [80].

In terms of the relationship between form and meaning, context has been hypothesised
to play a role in explaining the balance between systematicity and arbitrariness. Mon-
aghan et al. [73] posit that arbitrary mappings allow contextual information to have a
maximal impact on determining the semantic representation of a corresponding form,
thus satisfying both the constraints for expressivity by maintaining distinct referents,
and for acquisition by relying on context to reduce the cost of learning.



Chapter 5

Experiment 2: Language Design

This section explores the interactions between vocabulary structure and cognitive pro-
cesses, specifically language acquisition and use. Experiment 1 cast doubt on the ex-
istence of global phonosemantic systematicity; though language use is enhanced by
arbitrary mappings which enable reliable communication of potentially novel ideas,
such a high degree of arbitrariness is unexpected as language acquisition favours sim-
ple, systematic, and structured vocabularies that are compressible.

From a cultural evolutionary perspective, it’s hard to imagine that language, especially
one as wide-spread as English, hasn’t evolved to optimise both learning and expression.
To further explore the origins of arbitrariness in vocabulary structure, this chapter tests
2 hypotheses that attempt to explain such a high degree of arbitrariness by proposing
potential advantages to language acquisition caused by arbitrary mappings. The first
is based on the role of contextual information in guiding the semantic interpretation
of phonological form and was put forward by Monaghan et al. [73], while the second
proposes that arbitrary mappings become necessary for effective language acquisition
as vocabulary size increases [43].

Using a simulation inspired by Monaghan et al. and drawing on 2 tasks vital to lan-
guage acquisition, both hypothesis are tested. This chapter first presents the general
simulation design and reimplementation of Monaghan et al.’s study. Secondly, the
validity and robustness of Monaghan et al.’s results are tested. Finally, the same simu-
lation is used to explore the vocabulary size hypothesis.

5.1 General Methodology

Monaghan et al. posit that the vocabulary structure’s balance between systematicy and
arbitrariness has been struck to satisfy the conflicting requirements of learning to indi-
viduate the specific meaning of a word and to categorise similar words based on their
semantic features, both of which are vitally important to communication [73]. Cate-
gorisation is a complicate task as words will belong to multiple categories, however
Monaghan et al. focus on the task of learning the grammatical category of a word.
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Specifically, they hypothesise that systematic form-meaning mappings facilitates such
category learning, while arbitrary mappings facilitates individuation when leaning oc-
curs in the presence of additional contextual information that encodes semantic cues
to guide comprehension and learning.

To test this hypothesis, they modelled how arbitrariness and systematicity in vocabu-
lary mappings affect these key language acquisition tasks – individuation and categori-
sation. A feedforward neural network was trained on systematic and arbitrary sets of
mappings between phonological and semantic vectors to predict semantic representa-
tions, and the quality of learning over time was assessed over the 2 tasks. 2 simulations
were devised; the first using only phonological information as input, and the second
including additional contextual information where context is modelled as an additional
input feature directly indicating semantic category.

Monaghan et al.’s simulations were reimplemented as a basis for further experimen-
tation into the interactions between vocabulary structure, language acquisition, and
expression. These simulations consist of 4 key components:

1. Training data: arbitrary and systematic sets of mappings between phonological
and semantic feature vectors

2. Network: a simple, fully connected network trained with backpropagation

3. Tasks: the accuracy scores for individuation and categorisation used to access
the quality of learning

4. Training & Testing: measuring model performance across training epochs

Details of how each component was implemented in this study are presented below.

Training Data Training data used by Monaghan et al. consists of phonological and
semantic representations used to build a small toy language of 12 mappings between
2 distinct phonological classes and 2 distinct semantic classes. The mappings between
phonological and semantic vectors reflect vocabulary structure such that in the sys-
tematic condition, items from the same phonological class are mapped to the same
semantic class, while in the arbitrary condition, half the items of each phonological
class are mapped to each semantic class.

All word forms included 3 IPA symbols of the same Consonant−Vowel−Consonant
(CVC) form. Each symbol was associated with 11 phone features from a scheme of
distinctive feature combinations devised by Harm and Seidenberg [48], resulting in 33-
dimensional vectors. To create the 2 distinct phonological classes, 12 words were build
using either fricative consonants and front vowels, or plosive consonants and back
vowels. A similar language was designed for the current experiment and is displayed
in table 5.1.

Semantic space consisted of 10 dimensions, where the semantic classes (A and B) were
represented by centres at 0.25 and 0.75 in each dimension. Semantic representations
associated with each phonological vector were generated by adding uniform noise in
the range ±0.25 to the corresponding category centre in semantic space.
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Table 5.1: Toy Language. In the systematic condition, semantic class A contains frica-
tive consonants and front vowels, while class B contains plosive consonants and back
vowels. Half the instances of each phonological class are assigned to the semantic
classes in the arbitrary condition.

Semantic Class
Systematic Condition Arbitrary Condition
Class A Class B Class A Class B

Phonological Form

fi:z gOk fi:z fIz
fIz gu:k zIf zi:f
zi:f kOg fIf zi:z
zIf ku:g ku:g gOk
zi:z kOk kOk gu:k
fIf gu:g gu:g kOg

The Network The basic network architecture from Monaghan et al. included 33 input
units, 10 hidden units, and 10 output units; weights for each unit were initialised to a
uniform distribution [73]. Given a phonological representation of a word, the network
was trained with backpropagation using stochastic gradient descent with a learning
rate of 0.05 to predict the corresponding semantic representation. Given the size and
simplicity of the dataset, this architecture seems well-suited to the study.

The Tasks (Accuracy Scores) After being trained and presented with phonological
forms, semantic representation predictions were used to assess the performance on the
individuation and generalisation tasks:

• Generalisation: a prediction was correct if the semantic category of the closest
semantic pattern to the predicted output was that of the test items true category

• Individuation: a prediction was correct if the predicted semantic vector was clos-
est to the true semantic vector associated with the test item.

Training & Testing To measure the quality of learning with the 2 tasks, the network
completed a varying number of training blocks where each block consisted of a pre-
sentation of the 12 mappings in a random order before being tested on the set of phono-
logical representations. Monaghan et al. assessed model performance after intervals of
{10,12,30,40} training blocks, however the current implementation assessed perfor-
mance after {1,5,10,15,25,40,50,75} training blocks to maintain comparable results
from all experiments. The model was tested over the training interval 16 times to mit-
igate the effects of random weight initialisations; the mean performance is reported.
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5.1.1 Simulation 1: Effects of Vocabulary Structure on Language
Acquisition

The implementation described above models acquisition of systematic and arbitrary
mappings without contextual information; results are displayed and discussed below.

Results & Discussion The Monaghan et al. hypothesis expects categorisation and
individuation performance to be higher in the systematic condition than in the arbitrary
one. Figure 5.1(a) demonstrate that this is the case, mirroring the results achieved by
Monaghan et al., displayed in figure 5.1(b); the accuracy with which the model can
categorise and individuate words is consistently higher under systematic conditions
than arbitrary ones. Slight differences between Monaghan et al.’s results and the cur-
rent ones were attributed to differences in network design such as the initialisation of
weights which was not discussed by Monaghan et al..

(a) Current Results

(b) Monaghan et al.’s Re-
sults for (A) Categorization
and (B) Individuation [73]

Figure 5.1: Average Performance Variation with Training Epochs on Categorization and
Individuation Tasks Without Context

There were 2 main concerns about general simulation design that cast doubt on the re-
liability and realistic credibility of these results; firstly, the structure of model training
and testing, and secondly, the simplicity of the simulation and dataset.

The first issue is centred around a golden rule of Machine Learning - separation of
training and test sets. Given that this simulation aims to model language acquisition
which involved multiple exposures to new words [72], it seems justified to make an
exception to this Machine Learning practice.

The second involves simulation design, specifically the extremely simplified repre-
sentations of learning, form, and semantics. To test to robustness of their simulation
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results, Monaghan et al. completed parallel behavioural studies using the same toy
words and pictures from 2 distinct categories (objects and actions) as semantic repre-
sentations; results for both simulations are displayed in figure 5.2.

(a) Simulation 1: no context (b) Simulation 2: context

Figure 5.2: Average Human Performance Variation with Training Epochs for Language
from table 5.1. Figures from Monaghan et al. [73]

Results from the first behavioural study matched the patterns in results from simula-
tion 1 – systematic mappings resulted in higher accuracies for both categorization and
individuation. Together, these results to provide support for the credibility of simu-
lation design, as well as the view that systematicity facilitates language acquisition
while arbitrariness is a hinderance. However, natural language learning doesn’t occur
in isolation as it has been modelled in this simulation.

5.1.2 Simulation 2: Effects of Vocabulary Structure and Context on
Language Acquisition

As noted in section 4.3, language learning is dependent on a host of contextual cues that
constrain the potential meaning of a new word. Monaghan et al. hypothesis that the
arbitrary form-meaning mappings maximise the effects of such contextual information
in guiding semantic individuation, thus providing an advantage to acquisition and an
explanation for the degree of arbitrariness in real vocabularies.

To test this, the experimental set up from Simulation 1 was slightly modified. The new
method, results, and discussion are detailed below.

Method Given that task categorisation in these simulations is constrained to the
grammatical categories, Monaghan et al. integrated contextual information contained
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in language that denotes the grammatical category of a word, such as morphological
inflections or surrounding function words. These were operationalised as an additional
binary input feature for each phonological vector that corresponded perfectly to the
true semantic category [73]. The current experimental set-up was identical to Simula-
tion 1, with this addition.

Results Given that the additional contextual cue encodes semantic information, per-
formance should improve across both conditions and tasks; the context cue is directly
indicative of word category, and can help guide semantic predictions especially in the
arbitrary condition. To support the hypothesis described above, individuation perfor-
mance under arbitrary conditions should not only improve, but also exceed systematic
performance. Figure 5.3 demonstrates that current results match those obtained by
Monaghan et al.; not only does individuation performance under arbitrary conditions
increase compared to Simulation 1 without context, but it surpasses systematic indi-
viduation performance.

(a) Current Results

(b) Monaghan et al.’s Re-
sults for (A) Categorization
and (B) Individuation [73]

Figure 5.3: Average Performance Variation with Training Epochs on Categorization and
Individuation Tasks Without Context

The issues identified in the results section for simulation 1 (5.1.1) are also applicable in
simulation 2, as are the justifications. Monaghan et al. completed a second behavioural
study in tandem to this simulation (see figure 5.2), the results of which match the
patterns produced by the simulation [73].

These results imply that context improves performance for categorisation and individ-
uation in the arbitrary conditions, however, because the results also demonstrate that
context doesn’t necessarily improve individuation performance under systematic con-
ditions, they support the hypothesis that the effects contextual cues are maximised by
arbitrary mappings.
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5.2 Investigation 1 - Phonological Features

Results from the 2 simulations described in sections 5.1.2, 5.1.2 provide some inter-
esting insights to how language acquisition and vocabulary structure interact, however
the dataset of 12 mappings is extremely small. To ensure that results were robust to
a different representation of phonology, and to allow construction of larger datasets,
the same simulations were run using the phonological features derived in Experiment
1 (section 3.1.2).

This experiment involved generating new sets of mappings based on the phonological
features described in Experiment 1.

5.2.1 Method

As the simulation structure remained unchanged, the bulk of this experiment involved
automating the generation of training languages. Given that the network input consists
of concatenated feature vectors, all phonological items were of a specified Consonant−
Vowel form, from specified sets of consonants and vowels. Generating datasets in-
volved the following steps:

1. Grouping Sounds: as described in section 2.1.1.3 and figure A.2, IPA consonants
and vowels can be split into categories based on Manner and Place features.
Such sets were constructed from the CELEX IPA symbols to enable generation
of word forms from particular phonological classes.

Table 5.2: Phonological categories used to generate languages

Class CELEX IPA Symbols

Consonants
Fricative [f, v, T, D, s, z, x, h, Z]
Plosive [p, b, t, d, k, g]
Nasal [m, n, N]

Vowels
Front [i, e, 3, &]
Back [u:, V, O:, A, O]

2. Generate Phonological Representations: Given a specified form, and the sound
sets from which consonants and vowels should be drawn, phonological repre-
sentations were generated by randomly selecting symbols from the sound sets in
table 5.2.

3. Convert to Feature Sets: similarly to Experiment 1, sequences of IPA symbols
were parsed to produce vector concatenations of the corresponding phonological
feature vectors.

The network input layer was also altered to account for the change in input length.
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5.2.1.1 Test 1.a: Same Language

The first goal of this investigation was to ensure that results from simulations 1 and 2
were robust to different phonological feature representations. The same word forms
displayed in table 5.1 were converted into feature representations using the phonolog-
ical features from Experiment 1, resulting in 3∗24 = 72-dimensional vectors.

Simulations with the new phonological representations were run 16 times, reporting
the performance mean and standard deviations.

5.2.1.2 Test 1.b: Generated Languages

The automatic generation of phonological forms allowed different datasets to be gener-
ated, further testing the robustness of results from Simulation 1 and 2. Both simulations
were run on 15 language sets of 12 mappings generated from the same phonological
sound sets used by Monaghan et al. (fricative consonants and front vowels, or plosive
consonants and back vowels). The performance of the model was measured on each
language 16 times to reduce the effects of random weight and bias initialisation.

5.2.2 Results & Discussion

Test 1.a.: Same Language The results from Test 1.a. display the same trends as
obtained when simulation 1 was run using phonological representations derived from
Harm and Seidenberg’s phonological features, and Monaghan et al.’s first behaviour
study - systematic mappings result in better scores on on both tasks. Results, displayed
in figure 5.4, demonstrate that learning trends of both simulations are robust to different
phonological representations.

Though the performance trends are consistent when using both sets of phonological
features, there is a notable difference between the accuracy scores achieved. Generally,
scores improved when trained on mappings with form representations constructed from
the Experiment 1 phonological features, however difference between the systematic
and arbitrary conditions decreased. Given that all other factors remained constant,
the performance differences must be due to how the network processed the different
phonological feature representations.

Harm and Seidenberg used 11 features to represent each IPA symbol while the cur-
rent representations are 23-dimensional. From a Machine Learning perspective, the
increase in general performance is likely due to extreme overfitting caused by the ad-
ditional features while the decrease in performance difference between the arbitrary
and systematic conditions could be due to the additional features making systematicity
harder to detect and thus distinguish from arbitrary mappings. Though the additional
phonological detail encoded in the extra features increases the neural network perfor-
mance, it is difficult to relate these results to human learning and determine whether
humans represent phonology with more or less detail.
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(a) Simulation 1: no context (b) Simulation 2: context

Figure 5.4: Average Performance Variation with Training Epochs With Context on Lan-
guage from table 5.1 (Experiment 1 Phonological Features)

Test 1.b.: Generated Languages Given that the toy language used throughout this
experiment was extremely constrained, this experiment aimed to test if results were
also robust to training languages. Simulations 1 and 2 were run on different sets of
mappings based on phonological feature vectors randomly generated from the sound
sets used by Monaghan et al. and of the same CVC form. Results are displayed in
figure 5.5, displaying similar patterns found in all the previous experiments.

(a) Simulation 1: no context (b) Simulation 2: context

Figure 5.5: Average Performance Variation with Training Epochs With Context on Ran-
domly Generated Language (Experiment 1 Phonological Features)

Though similar trends are present, they are less pronounced. Given that the semantic
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representations and phonological features used to construct phonological vectors were
unchanged, these results imply that properties of the training language affect learning.

An important feature to consider in this case is the variability of the phonological
sound sets used to generate languages; the language inspired by Monaghan et al.’s
contained form presentations drawn from sound sets of 2 symbols while the magni-
tudes of the current sound sets are variable and all larger than 2 (see table 5.2). Both
generated languages ((fricative, back) and (plosive, front)) are thus more
variable than the Monaghan et al.-inspired languages. Such variation reduced the ’sys-
tematicity’ across each training language, which could explain reduced differences in
performance between the systematic and arbitrary conditions. Addition experimenta-
tion demonstrated that differences in performance were amplified to the levels found
in Test 1.a. as the variability of phonological sound sets was reduced.

An unexpected feature of these results is that though arbitrary mappings produce a
higher individuation accuracy than systematic mappings when context is present, the
arbitrary condition still produce worse results than when no additional contextual in-
formation is provided. Monaghan et al.’s results, as well as the results from Test 1.a.,
demonstrate that contextual information reduced individuation performance under sys-
tematic conditions, but enhances performance in arbitrary conditions. Though individ-
uation performance under systematic conditions decreases when context is provided,
the final individuation performance under arbitrary conditions is slightly lower when
context is provided.

Conclusions - Investigation 1 The performance trends reported by Monaghan et
al. seem to be robust to different phonological feature representations, however are
slightly sensitive to characteristics of the training language. Given that the language
used in their original simulations was so constrained in terms of variability and size,
this is to be expected. However, discovering such sensitivity encourages more rigorous
testing in further work, specifically regarding the complexity of the training language
by altering features such as variability and vocabulary size.

5.3 Investigation 2 - Vocabulary Size

This investigation explores another potential explanation for the prevalence of arbi-
trariness in vocabulary structure through a hypothesis put forward by Gasser: the sheer
size of the vocabulary [43]. Gasser agrees that systematic form-meaning mappings
should facilitate learning and comprehension in terms of increased learning speeds,
reduced memory requirements, and added constraints on potential semantic interpre-
tations of form, however he posits that as the vocabulary size grows, systematicity will
eventually impede both acquisition and communication.

Consider the form-meaning space in which mappings can be represented as (x,y) coor-
dinates; as the vocabulary grows, the average distance between mappings will decrease
and eventually produce interference on both dimensions as representations overlap.
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Form interference introduces synonymy while meaning interference produces ambi-
guity, both of which reduce the efficacy of acquisition and communication. Because
systematic mappings can be represented on a single component, interference is much
more likely to occur than if the relationship between form and meaning was arbitrary.

To test this hypothesis, Gasser simulates language acquisition by training a neural
network to predict form representation from semantic representations. Though his
simulation is more rudimentary than those implemented above, they involve similar
components:

• Training data: training data involves of pairs of ‘form’ and ‘meaning’ repre-
sentations. Each representation consists of 3 dimensions, which can each take
a value between 0 – 9. Dimension values are represented by Gaussian patterns
spread across 10 input units. Systematic mappings require semantic and form
representations to match on 2 dimensions, while arbitrary mappings simply in-
volve mappings between representations of randomly-selected dimension val-
ues. 2 vocabulary sizes were tested – 15 and 100 mappings.

• Network: Gasser also makes use of a connectionist network trained with back
propagation. The network structure includes 30 input units, 64 hidden units, and
30 output units.

• Training & Testing: In each epoch of training, the network was presented with
5 instances of each mapping - 1 was the canonical mapping, while the other 4
included additional noise (each dimension value in the form and meaning rep-
resentations was changed by ±1 with a probability of 0.2). The network was
trained on intervals of [10,20, ...,80,90] epochs. Performance was measured as
the mean squared error after each training interval.

Figure 5.6: Gasser’s Results: variation of average mean squared training loss with
training for small (15) and large (100) vocabularies [43]

Gassers results, displayed in figure 5.6, confirm the expectation that systematic map-
pings provide an advantage for small vocabulary sizes, possibly due to the explicit
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correlations that back propagation can quickly discover. For large vocabularies, how-
ever, the network trained on arbitrary form-meaning mappings eventually out-performs
the model trained on systematic mappings. He posits that the advantage occurs due in-
creased confusion due to the increased proximity of mappings, and the presence of
noise in the vocabulary.

This investigation involves testing Gasser’s hypothesis with a more realistic simulation.
The subsequent sections will describe the current methodology used to explore the
effects of vocabulary size and structure on language acquisition, corresponding results,
and discussion.

5.3.1 Method

Simulation 1 and 2 (sections 5.1.1, 5.1.2) were used as a basis for the current ex-
perimental design to test the robustness of Gasser’s hypothesis as they provide some
improvements with respect to Gasser’s simulation.

One of the key shortcomings of Gasser’s experimental design was the extreme degree
of abstraction. This issue was discussed with respect to simulations 1 and 2 above;
though the semantic space employed in simulations 1 and 2 was also very symbolic, the
form representations encode much more realistic phonological information. Another
deviation from Gasser’s design involves how performance is measured – the exemplar-
based accuracy scores used in simulation 1 and 2 are a more realistic representation
of how human learning occurs than mean squared training error as used in the Gasser
experiment [76] [85].

Simulations 1 and 2 were were run as described in section 5.2 on different vocabulary
sizes built from the phonological features from Experiment 1. This involved generat-
ing differently-sized vocabularies with 16, 32, 50, and 100 respective mappings. The
network was trained on each vocabulary 20 times to account for network weight ini-
tialisations; the mean performance across 5 languages of each size was measured to
mitigate the effects of random language generation.

5.3.2 Results & Discussion

The results for both simulation 1 and 2 with varying vocabulary sizes are displayed
in figures 5.7. Though differences in simulation design, network structure, and infor-
mation representation make comparing resulting values to Gasser’s results irrelevant,
performance trends between Gasser’s experiment and the 2 current simulations were
explored with respect to Gasser’s hypothesis that arbitrary mappings facilitate language
acquisition as the vocabulary grows.

Gasser’s design was more similar to the individuation task in Simulation 1 as it did
not include contextual information and measured mean squared error (a variant of the
individuation task), however current results show no advantage from arbitrary map-
pings for any vocabulary size. 2 potential explanations for such deviation stem from
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(a) Simulation 1: no context

(b) Simulation 2: context

Figure 5.7: Average Performance Variation with Vocabulary Size Language. For more
detailed values, see table B.1
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the notion of interference and are explored below. Though interference makes acqui-
sition and comprehension less efficient, it is a crucial component of real language –
synonymy and ambiguity are features of many, if not all, human languages [35] and
just as language processes like acquisition and expression occur in the presence of
useful contextual information, they also occur amongst a host of environmental and
psychological distractions.

A potential explanation is Gasser’s addition of noise to both form and meaning repre-
sentations. Gasser exposed the network to 5 potentially noisy variants of each map-
ping, forcing them to inhabit a larger portion of the total form-meaning space and thus
increasing the probability of overlap (interference). Such noise has not been added
to these simulations. Individuation performance is measured by accuracy where a se-
mantic prediction is labelled as correct if it is nearest the true semantic mapping. The
semantic space is therefore essentially a Voronoi partitioning where each true semantic
representation occupies a partition of semantic space with no overlap.

An important component of Gasser’s experiment that could also explain the absence
of an advantage from arbitrary mappings in simulation 1 was noted in Gasser’s paper
– the number of dimensions used to represent form and meaning are key parameters
to demonstrating the arbitrary advantage. Producing interference in form or meaning
spaces with only a few more dimensions would require exponentially larger vocabu-
laries. Given that Gasser’s experiment involved 30 input units (3 dimensions) while
the current experiment makes use of 72, this is a plausible explanation. The current
form representations are more realistic than Gasser’s as they are based on phonological
features, however this could hint that humans represent phonology differently.

Figure 5.8: Arbitrary Advantage: demonstrates at which training epoch the network
trained on arbitrary mappings begins to outperform one trained on systematic mappings
for different vocabulary sizes.

On the other hand, results from Simulation 2 (figure 5.7) provide empirical evidence
that vocabulary size could affect the balance of arbitrariness and systematicity in the
vocabulary. Though systematic mappings provide an early advantage for individua-
tion, eventually performance of the network trained on arbitrary mappings surpasses
its systematic counterpart for all tested vocabulary sizes. What’s most interesting is
when this advantage occurs during training for different vocabulary sizes. Figure 5.8
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demonstrates a relationship between the training epoch at which the advantage occurs
and the vocabulary size: the advantage occurs after less training as vocabulary size
increases. Though the difference in performance between the systematic and arbi-
trary conditions decreases as vocabulary size grows (see figure 5.7), these results still
provide some support for such a relationship. The decrease in performance is to be
expected given the task of individuation – the semantic space becomes crowded as the
vocabulary grows, making it much less likely that the network’s semantic prediction is
nearest the true semantic representation. The different in performance under system-
atic and arbitrary conditions is affected by how semantic patterns are generated, the
learning rate, and cost function.

Conclusions - Investigation 2 Though the advantage of arbitrary mappings for indi-
viduation is only present in simulation 2, simulation 2 is a more realistic model of ac-
quisition as language never occurs in isolation. Results from both simulations provide
further insight into Gasser’s hypothesis that arbitrary mappings provide an advantage
for language acquisition as vocabulary size increases [43].

Though results from Simulation 1 don’t directly support Gasser’s hypothesis that ‘ar-
bitrariness becomes necessary as the number of words [in the vocabulary] increases’
[43], analysis of the results highlights the importance of interference for demonstrating
the arbitrary advantage displayed in Gasser’s results and suggests that vocabulary size
affects acquisition indirectly. The results of Simulation 1 in conjunction with Gasser’s
findings demonstrate that the dimensionality of form-meaning spaces, the vocabulary
size, and the degree of noise in mappings all interact to determine the degree of inter-
ference in a vocabulary. Arbitrary mappings can mitigate such interference and thus
enhance acquisition.

Simulation 2 integrates a crucial component of language acquisition that was not mod-
elled in Gasser’s experiment – context. The results from simulation 2 imply that con-
text may interact with vocabulary size in producing the arbitrary advantage. It is the-
oretically plausible that the strengths of pressures from systematicity and distinctive-
ness change according to vocabulary size, especially when considering developmental
language acquisition. Psycholinguistics posit that distinctiveness is less important in
early stages of acquisition than the promotion of acquisition itself which is facilitated
by systematic mappings [91]; this theory is supported by the fact that words which are
acquired early are highly systematic compared to words acquired later [74].

Both simulations demonstrate important elements in modelling language processes –
noise and context. Similarly to conclusions from simulation 2 demonstrating con-
text an vocabulary size factors interacting to produce the arbitrary advantage, previous
research posits that noise and context components interact to maximise efficiency. Pi-
antadosi et al. state that ambiguity arises in all efficient communication systems when
useful contextual information is present. Given that semantic interference causes am-
biguity, integration of context in language acquisition and comprehension could allow
noisy semantic representations.
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5.4 General Discussion & Conclusions

The language design experiment involved testing 2 separate hypotheses for how ar-
bitrary form-meaning mappings could be advantageous to language acquisition and
thus explain the extreme degree of arbitrariness in form-meaning mappings – the first
posited that arbitrary mappings maximised the effects of useful contextual information
on acquisition, and the second proposed that arbitrary mappings increase the effec-
tiveness of learning as vocabulary size increases [73] [43]. Both were tested using a
simulation design inspired by Monaghan et al. [73].

Though the simulation design was simple, it was selected as Monaghan et al. had
completed parallel behavioural studies to support the validity of simulation results. On
reflection, the simulation design managed to capture relatively realistic representations
of form and meaning while maintaining a high degree of abstraction and control how-
ever improvements are possible. Though the form representations are much more uni-
form than real language as they all have the same CV form and are generated only from
phonological symbols drawn from 3 sound classes, they encode some true phonolog-
ical information. The semantic space is also relatively realistic – as discussed in sec-
tion 2.2.1.2, vector space can provide realistic representations of meaning. However,
additional consideration should be focused on more realistic generation of semantic
vectors rather than simply adding gaussian noise to predetermined class centres. Other
future work could focus on making representations less uniform, or making additional
classes.

An interesting aspect of the design that has not been mentioned thus far is how the ac-
curacy metrics of acquisition tasks – categorisation and individuation – were defined.
Though mean-squared error as used by Gasser provides some information about how
well the network learns to predict the specific corresponding mapping representation,
the individuation accuracy score used throughout this study seems a much more real-
istic model of learning.

On the other hand, the current categorisation tasks could be viewed as a form of ex-
emplar learning. Exemplar learning is a popular class of categorisation methods which
involve comparing novel stimuli to known category instances and performing cate-
gorisation using similarity metrics, such as the Generalised Context Model [76]. Such
models are often compared to Prototype learning which involves constructing proto-
types of each category to which novel stimuli are compared to during categorisation, or
rule-based exemplar categorisation such as General Recognition Theory which parti-
tions the feature space using decision boundaries [5]. A prototype-based categorisation
accuracy metric was implemented and run on simulations, however recent research
proposes that humans use a combination of rule-based and similarity-based categori-
sations methods such as Tenenbaum’s Bayesian model of Concept Learning [95].

Future work could modify the task accuracy metrics based on such models; the Bayesian
model would be particularly interesting for testing Gasser’s vocabulary size hypothesis
as it includes a size principle mechanism for guiding which categorisation strategy is
used based on category size.
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5.4.1 Conclusions

Investigation 1 found that task accuracy trends matched Monaghan’s results as well as
human performance, generally supporting the hypothesis that arbitrary mappings facil-
itate language acquisition by maximising the effects of useful contextual information.
Such trends were robust to different phonological feature representations but sensitive
to complexity of the language driven by characteristics like phonological class varia-
tion [74].

On the other hand, though Investigation 2 provided some support for Gasser’s hy-
pothesis that large vocabulary size produce an advantage for acquisition of arbitrary
mappings, Simulations 1 highlights that vocabulary size only indirectly drives this
advantage [43]. Interference, which is affected by factors like vocabulary size, the
dimensionality of representations and the degree of noise, is a more directly linked to
the advantage of arbitrary mappings on acquisition.

The results of both Investigations together provide more general insights. Firstly, they
demonstrate that acquisition may in fact benefit from arbitrary mappings which ex-
plains the high degree of arbitrariness in vocabulary mappings. Secondly, they high-
light the interconnected nature of language; it is highly probably that many factors
provide an arbitrary advantage to acquisition and that these effects combine in com-
plex ways.





Chapter 6

Conclusions

Though language is acquired and used by nearly all humans with very little conscious
effort, it is riddled with subtleties and nuances on every level. Cultural evolution posits
that language structure is a result of balancing the counteractive pressures applied from
the cognitive mechanisms for processing language [58]. This study has provided ex-
perimental exploration of the form-meaning relationship of language, as well as of
potential explanations for why such a relationship may exist from a cognitive and cul-
tural evolutionary perspective.

Experiment 1 highlighted potential flaws in previously-used methods for studying the
form-meaning relationship, specifically the statistical analysis applied to the relation-
ship, and the claims made about the global nature of phonosemantic systematicity [90]
[74]. Current results report a negative relationship between form-meaning correlation
when measuring with a more appropriate correlation coefficient (Spearman); though
not in line with previous research, it could be partially explained by related research
into how different phonological features may be reacting to pressures for systematic-
ity and discriminability [93]. More importantly though, analysis of current results
in conjunction with previous findings demonstrated that phonosemantic systematic-
ity is more difficult to study that previously imagined, especially regarding how local
phonosemantic systematicity affects the global relationship between form and mean-
ing. The current study reveals that such local pockets were potentially oversimplified
and underestimated with the Shillcock et al. method. Future studies should take care
to avoid methods that make assumptions about the quality of the form-meaning rela-
tionship, and ensure that local systematicity is sufficiently accounted for.

Regardless of how phonosemantic systematicity is studied, the current results along
with all previous research demonstrate that vocabulary structure is highly arbitrary
[74] [93] [90]. Experiment 2 aimed to explore how such structure interacts with cogni-
tive processes required to acquire language. Simulations of language acquisition were
used to explore 2 hypothesis for factors that could explain why the form-meaning re-
lationship in terms of their effects on language acquisition – the integration of context,
and vocabulary size [73] [43]. Investigations demonstrated that including useful con-
textual information produced an advantage of arbitrariness for acquisition, and that
interference between form-meaning mappings, driven by factors including vocabulary

65
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size, impacted how quickly the advantage occurred; performance trends were robust
to phonological representations but sensitive to the language complexity such as the
variability of phonological classes. The current experimental design successfully cap-
tured some aspects of acquisition but highlighted the difficulty of modelling realistic
language processes. Obtaining controlled conditions requires the use of simplifying
assumptions, however current results demonstrate that interactions between complex
components which may be difficult to model, like contextual information and noisy
mappings, are vital to producing meaningful results.

Along with their individual conclusions, these experiments both suggest that taking an
interdisciplinary approach to the study of language is the best way to uncover mean-
ingful findings.
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Appendix A

Phonosemantic Systematicity

(a) Vowels (b) Consonants

Figure A.1: CELEX to IPA sybmbol Conversion Charts [7]
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78 Appendix A. Phonosemantic Systematicity
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Fricative   f v   s z  Z     x      h 
Lateral  
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Approximant              j     

Lateral 
Approximant        l        L   

anterior + + + + - - - - - - - 
coronal - - + + + + - - - - - 

distributed - - + - + - - - - - - 
high - - - - - - + + - - - 
low - - - - - - - - - + - 

back - - - - - - - + + + - 

Variants  More Sounds 

s =   bilabial click  
c = t | dental click  
y = j ! (post) alveolar click  
r =   palato-alveolar click  
j =   alveolar lateral click   
c = ts  alveolar lateral flap  
l =   simultaneous  and x  
z =   voiced labio-palatal approximate

j = d  voiceless epiglottal fricative 

u = y  voiced epiglottal fricative 

o = œ  [-voi] alveolo-palatal fricative 

a =   voiced alveolo-palatal fricative 

 

Feature Geometry  
 

 (prosodic) 
 Skeleton:                   C,V 
 
 Root Tier:         [consonantal] 

[sonorant] 
 

 Root-linked 
    Tiers:      [cont] 
                        [lat] 
                         [nas] 

 
 Laryngeal                                 LAR 
    Tier:                                  
                                            [voi] [SG] [CG] 
 
 Place Tier: 

PLACE 
 

  [labial]      [coronal]        [dorsal]         [phar] 
 

 [round]   [ant]  [dist]    [hi] [lo] [mid]    [ATR] 
 

                                              SONORITY SCALE (varies somewhat across languages)

1 vowels 2 glides 3 liquids 4 nasals 5 fricatives 6 stops & 
affricates  

+syllabic  − syllabic 
− consonantal + consonantal 

+approximant − approximant 
+ sonorant − sonorant  

                                       + continuant [ -cont]* [± cont] − continuant
  *Though nasals are [-cont] due to obstruction of the oral cavity, the nasal airflow makes them more sonorous than stops.

 DIACRITICS  SUPRASEGMENTALS 
 voiceless  n  d   breathy voice b  a  primary stress 
 voiced  s t  creaky voiced b  a  secondary stress 
 aspirated t d  linguolabial t d  long   half long 
 more rounded   labialized t d  extra short 
 less rounded   palatalized t d  minor (foot) group 

 advanced u  velarized t d  major (intonation) group 

 retracted e   pharyngealized t d . syllable break 
 dental t d  nasalized e TONES AND WORD ACCENTS 

 apical t d   nasal release d e  extra high  rising 

 laminal t d   lateral release d e  high  falling 

 centralized e  no audible release e  mid  hi rising 

 md-centralized e  velar or pharyngeal l e  low  low rising 

 syllabic n   ATR e   RTR e e  extra low  rise fall 

 non-syllabic e  lowered e  ↓ downstep  global rise 

 rhoticity    raised e ↑ upstep  global fall 
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Figure A.2: Riggle’s Phonological Feature Chart



Appendix B

Language Design

Table B.1: Final Accuracy Scores (after 100 epochs) of simulations 1 & 2 from Test 2.a.

Size Task Condition Final Accuracy Score
No Context Context

Small
Categorization

Systematic 1.0 1.0
Arbitrary 0.979 1.0

Individuation
Systematic 0.819 0.624
Arbitrary 0.815 0.712

Medium
Categorization

Systematic 1.0 1.0
Arbitrary 0.936 1.0

Individuation
Systematic 0.444 0.265
Arbitrary 0.388 0.324

Large
Categorization

Systematic 1.0 1.0
Arbitrary 0.864 1.0

Individuation
Systematic 0.166 0.100
Arbitrary 0.130 0.112

XLarge
Categorization

Systematic 1.0 1.0
Arbitrary 0.793 1.0

Individuation
Systematic 0.068 0.047
Arbitrary 0.050 0.056
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